Comparing past accumulation rate reconstructions in East Antarctic ice cores using Be-10, water isotopes and CMIP5-PMIP3 models
International audience Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 kyr in Antarctica. Inferring the variations in past accumulation rate in polar regions is essential both for documenting p...
Published in: | Climate of the Past |
---|---|
Main Authors: | , , , , , , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2015
|
Subjects: | |
Online Access: | http://hal.in2p3.fr/in2p3-01148166 http://hal.in2p3.fr/in2p3-01148166/document http://hal.in2p3.fr/in2p3-01148166/file/cp-11-355-2015.pdf https://doi.org/10.5194/cp-11-355-2015 |
Summary: | International audience Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 kyr in Antarctica. Inferring the variations in past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic Plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such an assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high-resolution beryllium-10 (Be-10) as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high-resolution Be-10 record covering a full climatic cycle over the period 269 to 355 ka from Marine Isotope Stage (MIS) 9 to 10, including a period warmer than pre-industrial (MIS 9.3 optimum). After correcting Be-10 for the estimated effect of the palaeomagnetic field, we deduce that the Be-10 reconstruction is in reasonably good agreement with EDC3 values for the full cycle except for the period warmer than present. For the latter, the accumulation is up to 13% larger (4.46 cm ie yr(-1) instead of 3.95). This result is in agreement with the studies suggesting an underestimation of the deuterium-based accumulation for the optimum of the Holocene (Parrenin et al. 2007a). Using the relationship between accumulation rate and surface temperature from the saturation vapour relationship, the Be-10-based accumulation rate reconstruction suggests that the temperature increase between the MIS 9.3 optimum and present day may be 2.4 K warmer than estimated by the water isotopes reconstruction. We compare these reconstructions to the available model results from CMIP5-PMIP3 for a glacial and an interglacial state, i.e. for the Last ... |
---|