Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica

During the austral summer 2019/2020, three vertically-pointing K-band Doppler profilers (MRR-PRO) have been deployed along a transect across the Sør Rondane Mountains, directly south of the scientific base Princess Elisabeth Antarctica. The MRR-PRO have been placed at locations corresponding to diff...

Full description

Bibliographic Details
Main Authors: Ferrone, Alfonso, Vignon, Étienne, Zonato, Andrea, Berne, Alexis
Other Authors: Federal Office of Meteorology and Climatology MeteoSwiss, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Royal Netherlands Meteorological Institute (KNMI)
Format: Report
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04248142
https://hal.science/hal-04248142/document
https://hal.science/hal-04248142/file/egusphere-2023-490.pdf
https://doi.org/10.5194/egusphere-2023-490
Description
Summary:During the austral summer 2019/2020, three vertically-pointing K-band Doppler profilers (MRR-PRO) have been deployed along a transect across the Sør Rondane Mountains, directly south of the scientific base Princess Elisabeth Antarctica. The MRR-PRO have been placed at locations corresponding to different stages of the interaction between the complex terrain and the typical flow associated with precipitating systems. The radar measurements, alongside information from the ERA5 reanalysis and a set of high-resolution WRF simulations, have been used to study the spatial variability of snowfall across the transect. Radar observations reveal differences in the frequency of occurrence of virga and surface precipitation above the transect. An analysis of the WRF outputs reveals the presence of a relatively dry layer above the radar locations, reaching a constant altitude of 3.5 km above mean sea level. Due to the complex terrain, the depth of the layer varies across the transect, affecting sublimation and the occurrence of virgae. Combined information from the ERA5 reanalysis, the WRF simulations, and ground-level measurements suggest that orographic lifting enhances precipitation above the highest mountain peaks. Finally, the analysis of the succession of virga and surface precipitation above the sites shows that, in most cases, they represent different stages of the same large-scale events. This study reveals the significant spatial variability in the occurrence of precipitation in a region of complex terrain, emphasizing the importance of collecting snowfall measurements in the mountainous regions of the Antarctic continent.