Absence of an internal multidecadal oscillation in the North Atlantic has consequences for anticipating the future of marine ecosystems

The North Atlantic marine ecosystem has been expected to adjust imminently to a negative phase of the Atlantic Multidecadal Oscillation (AMO). Recent results suggest, however, that the AMO is not a regular internal source of variability, but has been driven by both volcanism and sulphate aerosol emi...

Full description

Bibliographic Details
Published in:Climate Research
Main Authors: Beaugrand, G, Faillettaz, Robin, Kirby, R.R.
Other Authors: Sciences et Technologies Halieutiques (STH), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-04203695
https://doi.org/10.3354/cr01676
Description
Summary:The North Atlantic marine ecosystem has been expected to adjust imminently to a negative phase of the Atlantic Multidecadal Oscillation (AMO). Recent results suggest, however, that the AMO is not a regular internal source of variability, but has been driven by both volcanism and sulphate aerosol emissions that have influenced temperature negatively, and a period of greenhouse gas accumulation causing temperatures to be higher than normal. The demise of the AMO removes the expected and imminent cyclical change from the current warm phase to a negative cool phase in the North Atlantic. Here, we discuss the implications of this new finding for the near-future of North Atlantic marine ecosystems in a context of rapid climate warming.