Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation

Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important...

Full description

Bibliographic Details
Published in:Environmental Science and Pollution Research
Main Authors: Akcha, Farida, Barranger, Audrey, Bachère, Evelyne
Other Authors: Laboratoire d'Écotoxicologie (LEX), Biogéochimie et Ecotoxicologie (BE), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Interactions Hôtes-Pathogènes-Environnements (IHPE), Université de Perpignan Via Domitia (UPVD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-04203226
https://hal.science/hal-04203226/document
https://hal.science/hal-04203226/file/Akcha-2021-EnvSciPollRes-Genotoxic.pdf
https://doi.org/10.1007/s11356-020-11021-6
Description
Summary:Recently, research has contributed to better knowledge on the occurrence of pesticides in coastal water by identifying frequently detected substances, their concentration range and their acute and chronic toxicity for organisms. Pesticide pollution is of particular concern in France due to important agricultural activities and presence of several exoreic catchment areas that vehicle pesticides up to coastal waters, impacting non-target marine species. Several ecotoxicology questions remain to be addressed concerning the long-term effects of chronic pesticide exposure and the mechanisms involved in adaptation to chemical stress. In the present study, we brought new insights on the genetic and epigenetic effects of the herbicide diuron in oyster genitors. During gametogenesis, we exposed Crassostrea gigas to environmentally realistic herbicide concentrations (0.2–0.3 μg L−1 during two 7-day periods at half-course and end of gametogenesis). Diuron exposure was shown to decrease global DNA methylation and total methyltransferase activity in whole oyster tissue; this is consistent with the previous observation of a significant decrease in DNMT1 gene expression. Diuron effect seemed to be tissue-specific; hypermethylation was detected in the digestive gland, whereas diuron exposure had no effect on gill and gonad tissue. The genotoxicity of diuron was confirmed by the detection of one adduct in gonad DNA. By using in vitro approaches and human DNMT1 (DNMT1 has not been purified yet in bivalves), the presence of DNA lesions (adduct, 8-oxodGuo) was shown to interfere with DNMT1 activity, indicating a complex interaction between DNA damage and DNA methylation. Based on our results, we propose mechanisms to explain the effect of diuron exposure on DNA methylation, a widespread epigenetic mark.