Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem

The eastern Beaufort Sea (EBS) beluga whale Delphinapterus leucas population has experienced a 20 yr decline in inferred growth rates of individuals, which is hypothesized to have resulted from changes in prey availability. We used fatty acid signatures and stable isotope ratios to reconstruct the p...

Full description

Bibliographic Details
Published in:Marine Ecology Progress Series
Main Authors: Choy, Es, Giraldo, Carolina, Rosenberg, B, Roth, Jd, Ehrman, Ad, Majewski, A, Swanson, H, Power, M, Reist, Jd, Loseto, Ll
Other Authors: Laboratoire Ressources halieutiques Boulogne sur mer (LRHBL), Halieutique Manche Mer du Nord (HMMN), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-04203214
https://doi.org/10.3354/meps13413
Description
Summary:The eastern Beaufort Sea (EBS) beluga whale Delphinapterus leucas population has experienced a 20 yr decline in inferred growth rates of individuals, which is hypothesized to have resulted from changes in prey availability. We used fatty acid signatures and stable isotope ratios to reconstruct the proportional contributions of 14 prey species to the diets of 178 beluga whales from 2011 to 2014. Prey estimates using quantitative fatty acid signature analysis suggest that EBS beluga whales primarily consume Arctic cod Boreogadus saida, a species highly sensitive to climate change. Prey estimates varied with year and sex and size class of the whales, with large males consuming the highest proportions of Arctic cod, and females consuming the highest proportions of capelin Mallotus villosus. Estimated proportional contributions of Arctic cod to beluga diet decreased from 2011 to 2014, coinciding with an increase in capelin. Belugas consumed the highest proportions of capelin and the lowest proportions of cod in 2014, the same year in which body condition indices were lowest in the whales. We hypothesize that changing conditions in the Beaufort Sea ecosystem may result in a decreased consumption of Arctic cod by belugas and increased consumption of capelin, which may result in a decline in condition. This may predominately affect females and juveniles since they consume the highest proportions of capelin; however, long-term monitoring is needed for confirmation. Understanding inter-annual variation in prey, and the longer-term nutritional implications of shifting from an Arctic cod- to a capelin-dominated diet should be a priority for monitoring EBS predators.