Ground-based oblique-view photogrammetry and sentinel-1 spaceborne RADAR reflectivity snow melt processes assessment on an arctic glacier

International audience The snowpack evolution during the melt season on an Arctic glacier is assessed using ground-based oblique-view cameras, spaceborne imaging and spaceborne RADAR. The repeated and systematic Synthetic Aperture RADAR (SAR) imaging by the European Space Agency's Sentinel-1 sp...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Friedt, Jean-Michel, Bernard, Éric, Griselin, Madeleine
Other Authors: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC), Théoriser et modéliser pour aménager (UMR 6049) (ThéMA), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04053367
https://hal.science/hal-04053367/document
https://hal.science/hal-04053367/file/remotesensing-15-01858.pdf
https://doi.org/10.3390/rs15071858
Description
Summary:International audience The snowpack evolution during the melt season on an Arctic glacier is assessed using ground-based oblique-view cameras, spaceborne imaging and spaceborne RADAR. The repeated and systematic Synthetic Aperture RADAR (SAR) imaging by the European Space Agency's Sentinel-1 spaceborne RADARs allows for all-weather, all-illumination condition monitoring of the snowcovered fraction of the glacier and hence assessing its water production potential. A comparison of the RADAR reflectivity with optical and multispectral imaging highlights the difference between the observed quantities-water content in the former, albedo in the latter-and the complementarity for understanding the snow melt processes. This work highlights the temporal inertia between the visible spring melting of the snowpack and the snow metamorphism. It was found that the snowpack exhibits that approximately 30 days before it starts to fade.