Biocrusts: Engineers and Architects of Surface Soil Properties, Functions, and Processes in Dryland Ecosystems

International audience Biocrusts are photosynthetic biotic communities of cryptogams and microbes that aggregate minerals at the soil surface in many ecosystems. Due to their high tolerance to harsh environments, biocrusts are present in a wide range of habitats, but are especially representative gr...

Full description

Bibliographic Details
Published in:Geoderma
Main Authors: Xiao, Bo, Bowker, Matthew A., Zhao, Yunge, Chamizo, Sonia, Issa, Oumarou Malam
Other Authors: Northwest A and F University, China Agricultural University (CAU), Northern Arizona University Flagstaff, Universidad de Almería (UAL), Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-03986618
https://doi.org/10.1016/j.geoderma.2022.116015
Description
Summary:International audience Biocrusts are photosynthetic biotic communities of cryptogams and microbes that aggregate minerals at the soil surface in many ecosystems. Due to their high tolerance to harsh environments, biocrusts are present in a wide range of habitats, but are especially representative ground covers in regions with restricted vegetation growth, such as drylands (hyperarid, arid, semiarid, and dry subhumid regions) where water is a limiting factor, or high latitude or altitude regions where cold is a limiting factor. Since biocrusts fulfill a large range of ecological roles particularly in modifying soil properties and regulating functions, their rehabilitation and management is believed to be a promising measure for combating land degradation. We organized this article collection to further highlight the importance of biocrusts and their fundamental roles in reshaping soil properties and multifunctionality in drylands and other ecosystems, and to elucidate the ways in which global change factors are influencing biocrust-soil systems. The special issue brings together 27 research articles pertinent to soil-biocrust interactions or biocrust response to global change and disturbance from 12 countries worldwide (10 papers from China, 6 papers from the USA, 2 papers from Spain, 2 papers from Australia, in addition to studies from Antarctica, Argentina, Brazil, Iceland, Iran, Mexico, Norway, South Africa, and Sweden). The discussed topics include biocrust roles in regulating soil hydrology (6 papers), reducing soil erosion (4 papers), affecting soil carbon fixation and respiration (2 papers), and influencing soil microbial biodiversity (5 papers). The responses of biocrusts themselves and their functions to trampling disturbance (2 papers), land use shifts (2 papers), and climate change (5 papers) are also emphasized. On the whole, we highlight the capability of biocrusts in reshaping most properties of surface soil, acting as engineers and architects of surface soil properties, functions, and processes ...