Early Emergence of Three Dopamine D1 Receptor Subtypes in Vertebrates. Molecular phylogenetic, pharmacological, and functional criteria defining D1A, D1B, and D1C receptors in European eel Anguilla anguilla

International audience The existence of dopamine D1C and D1D receptors in Xenopus and chicken, respectively, challenged the established duality (D1A and D1B) of the dopamine D1 receptor class in vertebrates. To ascertain the molecular diversity of this gene family in early diverging vertebrates, we...

Full description

Bibliographic Details
Published in:Journal of Biological Chemistry
Main Authors: Cardinaud, Bruno, Sugamori, Kim S., Coudouel, Sophie, Vincent, Jean-Didier, Niznik, Hyman B., Vernier, Philippe
Other Authors: Institut Alfred Fessard, Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 1997
Subjects:
Online Access:https://hal.science/hal-03577385
https://doi.org/10.1074/jbc.272.5.2778
Description
Summary:International audience The existence of dopamine D1C and D1D receptors in Xenopus and chicken, respectively, challenged the established duality (D1A and D1B) of the dopamine D1 receptor class in vertebrates. To ascertain the molecular diversity of this gene family in early diverging vertebrates, we isolated four receptor-encoding sequences from the European eel Anguilla anguilla. Molecular phylogeny assigned two receptor sequences (D1A1 and D1A2) to the D1A subtype, and a third receptor to the D1B subtype. Additional sequence was orthologous to the Xenopus D1C receptor and to several other previously unclassified fish D1-like receptors. When expressed in COS-7 cells, eel D1A and D1B receptors display affinity profiles for dopaminergic ligands similar to those of other known vertebrate homologues. The D1C receptor exhibits pharmacological characteristics virtually identical to its Xenopus homologue. Functionally, while all eel D1 receptors stimulate adenylate cyclase, the eel D1B receptor exhibits greater constitutive activity than either D1A or D1C receptors. Semiquantitative reverse transcription-polymerase chain reaction reveals the differential distribution of D1A1, D1A2, D1B, and D1C receptor mRNA within the hypothalamic-pituitary axis of the eel brain. Taken together, these data suggest that the D1A, D1B, and D1C receptors arose prior to the evolutionary divergence of fish and tetrapods and exhibit molecular, pharmacological, and functional attributes that unambiguously allow for their classification as distinct D1 receptor subtypes in the vertebrate phylum.