pH variability at volcanic CO 2 seeps regulates coral calcifying fluid chemistry

International audience Abstract Coral reefs are iconic ecosystems with immense ecological, economic and cultural value, but globally their carbonate‐based skeletal construction is threatened by ocean acidification (OA). Identifying coral species that have specialised mechanisms to maintain high rate...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Comeau, Steeve, Cornwall, Christopher, E, Shlesinger, Tom, Hoogenboom, Mia, Mana, Ralph, Mcculloch, Malcolm, Rodolfo-Metalpa, Riccardo
Other Authors: Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-03561214
https://hal.sorbonne-universite.fr/hal-03561214/document
https://hal.sorbonne-universite.fr/hal-03561214/file/Comeau_et_al_2022_Preprint.pdf
https://doi.org/10.1111/gcb.16093
Description
Summary:International audience Abstract Coral reefs are iconic ecosystems with immense ecological, economic and cultural value, but globally their carbonate‐based skeletal construction is threatened by ocean acidification (OA). Identifying coral species that have specialised mechanisms to maintain high rates of calcification in the face of declining seawater pH is of paramount importance in predicting future species composition, and growth of coral reefs. Here, we studied multiple coral species from two distinct volcanic CO 2 seeps in Papua New Guinea to assess their capacity to control their calcifying fluid (CF) chemistry. Several coral species living under conditions of low mean seawater pH, but with either low or high variability in seawater pH, were examined and compared with those living in ‘normal’ (non‐seep) ambient seawater pH. We show that when mean seawater pH is low but highly variable, corals have a greater ability to maintain constant pH cf in their CF, but this characteristic was not linked with changes in abundance. Within less variable low pH seawater, corals with limited reductions in pH cf at the seep sites compared with controls tended to be more abundant at the seep site than at the control site. However, this finding was strongly influenced by a single species ( Montipora foliosa ), which was able to maintain complete pH cf homeostasis. Overall, although our findings indicate that there might be an association between ecological success and greater pH cf homeostasis, further research with additional species and at more sites with differing seawater pH regimes is required to solidify inferences regarding coral ecological success under future OA.