Observation System Simulation Experiments in the Atlantic Ocean for enhanced surface ocean p CO 2 reconstructions

International audience Abstract. To derive an optimal observation system for surface ocean pCO2 in the Atlantic Ocean and the Atlantic sector of the Southern Ocean eleven Observation System Simulation Experiments (OSSEs) were completed. Each OSSE is a Feed-Forward Neural Network (FFNN) that is based...

Full description

Bibliographic Details
Main Authors: Denvil-Sommer, Anna, Gehlen, Marion, Vrac, Mathieu
Other Authors: School of Environmental Sciences Norwich, University of East Anglia Norwich (UEA), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03382169
https://doi.org/10.5194/os-2021-17
Description
Summary:International audience Abstract. To derive an optimal observation system for surface ocean pCO2 in the Atlantic Ocean and the Atlantic sector of the Southern Ocean eleven Observation System Simulation Experiments (OSSEs) were completed. Each OSSE is a Feed-Forward Neural Network (FFNN) that is based on a different data distribution and provides ocean surface pCO2 for the period 2008–2010 with a 5 day time interval. Based on the geographical and time positions from three observational platforms, volunteering observing ships (VOS), Argo floats and OceanSITES moorings, pseudo-observations were constructed using the outputs from an online-coupled physical-biogeochemical global ocean model with 0.25° nominal resolution. The aim of this work was to find an optimal spatial distribution of observations to supplement the widely used Surface Ocean CO2 Atlas (SOCAT) and to improve the accuracy of ocean surface pCO2 reconstructions. OSSEs showed that the additional data from mooring stations and an improved coverage of the Southern Hemisphere with biogeochemical ARGO floats corresponding to least 25 % of the density of active floats (2008–2010) (OSSE 10) would significantly improve the pCO2 reconstruction and reduce the bias of derived estimates of sea-air CO2 fluxes by 74 % compared to ocean model outputs.