Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis

International audience The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is simulated using an ensemble o...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Roy, Tilla, Bopp, Laurent, Gehlen, Marion, Schneider, Birgit, Cadule, Patricia, Frölicher, Thomas, Segschneider, Joachim, Tjiputra, Jerry, Heinze, Christoph, Joos, Fortunat
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institute of Geosciences Kiel, Christian-Albrechts-Universität zu Kiel (CAU), Climate and Environmental Physics Bern (CEP), Physikalisches Institut Bern, Universität Bern Bern -Universität Bern Bern, Max-Planck-Institut für Meteorologie (MPI-M), Max-Planck-Gesellschaft, Geophysical Institute Bergen (GFI / BiU), University of Bergen (UiB)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03113010
https://hal.archives-ouvertes.fr/hal-03113010/document
https://hal.archives-ouvertes.fr/hal-03113010/file/%5B15200442%20-%20Journal%20of%20Climate%5D%20Regional%20Impacts%20of%20Climate%20Change%20and%20Atmospheric%20CO2%20on%20Future%20Ocean%20Carbon%20Uptake%20A%20Multimodel%20Linear%20Feedback%20Analysis.pdf
https://doi.org/10.1175/2010JCLI3787.1
Description
Summary:International audience The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010–2100) oceanic CO2 uptake into a CO2-induced component, due to rising atmospheric CO2 concentrations, and a climate-induced component, due to global warming. The models capture the observation-based magnitude and distribution of anthropogenic CO2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO2 uptake in the subpolar Southern Ocean and the equatorial regions, owing to decreased CO2 solubility; and reduced CO2 uptake in the midlatitudes, owing to decreased CO2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extratropics, to large freshwater fluxes in the extratropical North Atlantic Ocean, and to small changes in the CO2 solubility in the equatorial regions. In key anthropogenic CO2 uptake regions, the climate-induced component offsets the CO2-induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extratropics and 25% in the southern extratropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO2 uptake may be difficult without monitoring additional tracers, such as oxygen.