Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric‐Resolution Ocean Models

International audience Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddie...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Ajayi, Adekunle, Le Sommer, Julien, Chassignet, Eric, Molines, Jean‐Marc, Xu, XIAOBIAO, Albert, Aurelie, Cosme, Emmanuel
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ANR-17-CE01-0009,BOOST-SWOT,Vers des produits de la circulation océanique de surface à la résolution kilométrique : exploitation de la future mission altimétrique SWOT(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03084224
https://hal.archives-ouvertes.fr/hal-03084224/document
https://hal.archives-ouvertes.fr/hal-03084224/file/2019JC015827.pdf
https://doi.org/10.1029/2019JC015827
Description
Summary:International audience Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. Nevertheless, it is well established that oceanic flows (<50 km) generally exhibit strong seasonality. In this study, we present a basin‐scale analysis of coherent structures down to 10 km in the North Atlantic Ocean using two submesoscale‐permitting ocean models, a NEMO‐based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM‐based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100 km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wave number spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10–50 km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime.