A simplified atmospheric boundary layer model for an improved representation of air-sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0)

International audience Abstract. A simplified model of the Atmospheric Boundary Layer (ABL) of intermediate complexity between a bulk parameterization and a three-dimensional atmospheric model is developed and integrated to the Nucleus for European Modelling of the Ocean (NEMO) general circulation m...

Full description

Bibliographic Details
Main Authors: Lemarié, Florian, Samson, Guillaume, Redelsperger, Jean-Luc, Giordani, Hervé, Brivoal, Théo, Madec, Gurvan
Other Authors: Mathematics and computing applied to oceanic and atmospheric flows (AIRSEA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Mercator Océan, Société Civile CNRS Ifremer IRD Météo-France SHOM, Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Météo France-Centre National de la Recherche Scientifique (CNRS), Nucleus for European Modeling of the Ocean (NEMO R&D ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.inria.fr/hal-03055058
https://hal.inria.fr/hal-03055058/document
https://hal.inria.fr/hal-03055058/file/gmd-2020-210.pdf
https://doi.org/10.5194/gmd-2020-210
Description
Summary:International audience Abstract. A simplified model of the Atmospheric Boundary Layer (ABL) of intermediate complexity between a bulk parameterization and a three-dimensional atmospheric model is developed and integrated to the Nucleus for European Modelling of the Ocean (NEMO) general circulation model. An objective in the derivation of such simplified model called ABL1d is to reach an apt representation in ocean-only numerical simulations of some of the key processes associated to air/sea interactions at the characteristic scales of the oceanic mesoscale. In this paper we describe the formulation of the ABL1d model and the strategy to constrain this model with large-scale atmospheric data available from reanalysis or real-time forecasts. A particular emphasis is on the appropriate choice and calibration of a turbulent closure scheme for the atmospheric boundary layer. This is a key ingredient to properly represent the air/sea interaction processes of interest. We also provide a detailed description of the NEMO-ABL1d coupling infrastructure and its computational efficiency. The resulting simplified model is then tested for several boundary-layer regimes relevant to either ocean/atmosphere or sea-ice/atmosphere coupling. The coupled system is also tested with a realistic 0.25° resolution global configuration. The numerical results are evaluated using standard metrics from the literature to quantify the wind/sea surface temperature (a.k.a. thermal feedback effect), wind/currents (a.k.a. current feedback effect) and ABL/sea-ice couplings. With respect to these metrics, our results show very good agreement with observations and fully coupled ocean-atmosphere models for a computational overhead of about 9% in term of elapsed time compared to standard uncoupled simulations. This moderate overhead, largely due to I/O operations, leaves room for further improvement to relax the assumption of horizontal homogeneity behind ABL1d and thus to further improve the realism of the coupling while keeping the flexibility of ...