Biomass burning fuel consumption rates: a field measurement database

International audience Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned t...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Van Leeuwen, T., Van Der Werf, G., Detmers, R., Rücker, G., French, N., Archibald, S., Carvalho Jr, J, Cook, G., Hély, C., Kasischke, E., Kloster, S., Mccarty, J., Pettinari, M., Savadogo, P., Alvarado, E., BOSCHETTI, L., Manuri, S., Meyer, C., Siegert, F., Trollope, L., Trollope, W., De Groot, W.
Other Authors: VU University Amsterdam, SRON Netherlands Institute for Space Research (SRON), Michigan Technological University (MTU), Council for Scientific and Industrial Research Pretoria (CSIR), University of the Witwatersrand Johannesburg (WITS), Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University (UNESP), CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation Canberra (CSIRO), Centre de Bio-Archéologie et d'Ecologie (CBAE), Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Montpellier 2 - Sciences et Techniques (UM2), University of Maryland College Park, University of Maryland System, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Universidad de Alcalá - University of Alcalá (UAH), University of Idaho Moscow, USA, Fenner School of Environment and Society, Australian National University (ANU), CSIRO Marine and Atmospheric Research Aspendale, Ludwig Maximilian University Munich (LMU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2014
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03046782
https://hal.archives-ouvertes.fr/hal-03046782/document
https://hal.archives-ouvertes.fr/hal-03046782/file/bg-11-7305-2014.pdf
https://doi.org/10.5194/bg-11-7305-2014
Description
Summary:International audience Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions. While burned area can be detected from space and estimates are becoming more reliable due to improved algorithms and sensors, FC is usually modeled or taken selectively from the literature. We compiled the peer-reviewed literature on FC for various biomes and fuel categories to understand FC and its variability better, and to provide a database that can be used to constrain biogeochemical models with fire modules. We compiled in total 77 studies covering 11 biomes including savanna (15 studies, average FC of 4.6 t DM (dry matter) ha−1 with a standard deviation of 2.2), tropical forest (n = 19, FC = 126 ± 77), temperate forest (n = 12, FC = 58 ± 72), boreal forest (n = 16, FC = 35 ± 24), pasture (n = 4, FC = 28 ± 9.3), shifting cultivation (n = 2, FC = 23, with a range of 4.0–43), crop residue (n = 4, FC = 6.5 ± 9.0), chaparral (n = 3, FC = 27 ± 19), tropical peatland (n = 4, FC = 314 ± 196), boreal peatland (n = 2, FC = 42 [42–43]), and tundra (n = 1, FC = 40). Within biomes the regional variability in the number of measurements was sometimes large, with e.g. only three measurement locations in boreal Russia and 35 sites in North America. Substantial regional differences in FC were found within the defined biomes: for example, FC of temperate pine forests in the USA was 37% lower than Australian forests dominated by eucalypt trees. Besides showing the differences between biomes, FC estimates were also grouped into different fuel classes. Our results highlight the large variability in FC, not only between biomes but also within biomes and fuel classes. This implies that substantial uncertainties are associated with using biome-averaged values to represent FC for whole biomes. Comparing the ...