Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
International audience This paper presents the first results about the assimilation of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) extinction coefficient measurements on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite in the MOCAGE (MOdè...
Published in: | Atmospheric Measurement Techniques |
---|---|
Main Authors: | , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.archives-ouvertes.fr/hal-03009420 https://hal.archives-ouvertes.fr/hal-03009420/document https://hal.archives-ouvertes.fr/hal-03009420/file/ElAmraoui_AMT2020.pdf https://doi.org/10.5194/amt-13-4645-2020 |
Summary: | International audience This paper presents the first results about the assimilation of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) extinction coefficient measurements on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite in the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) chemistry transport model of Météo-France. This assimilation module is an extension of the aerosol optical depth (AOD) assimilation system already presented by Sič et al. (2016). We focus on the period of the TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditer-ranéen) field campaign that took place during summer 2012. This period offers the opportunity to have access to a large set of aerosol observations from instrumented aircraft, balloons, satellite and ground-based stations. We evaluate the added value of CALIOP assimilation with respect to the model free run by comparing both fields to independent observations issued from the TRAQA field campaign. In this study we focus on the desert dust outbreak which happened during late June 2012 over the Mediterranean Basin (MB) during the TRAQA campaign. The comparison with the AERONET (Aerosol Robotic Network) AOD measurements shows that the assimilation of CALIOP lidar observations improves the statistics compared to the model free run. The correlation between AERONET and the model (assimilation) is 0.682 (0.753); the bias and the root mean square error (RMSE), due to CALIOP assimilation, are reduced from −0.063 to 0.048 and from 0.183 to 0.148, respectively. Compared to MODIS (Moderate-resolution Imaging Spectroradiometer) AOD observations, the model free run shows an underestimation of the AOD values, whereas the CALIOP assimilation corrects this underestimation and shows a quantitative good improvement in terms of AOD maps over the MB. The correlation between MODIS and the model (assimilation) during the dust outbreak is 0.47 (0.52), whereas the bias is −0.18 (−0.02) and the RMSE is 0.36 (0.30). ... |
---|