Phenotypic selection and covariation in the life-history traits of elephant seals: heavier offspring gain a double selective advantage

International audience Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitnes...

Full description

Bibliographic Details
Published in:Oikos
Main Authors: Oosthuizen, W. C., Altwegg, R., Nevoux, Marie, Bester, M. N., Nico de Bruyn, P. J.
Other Authors: University of Pretoria South Africa, University of Cape Town, African Climate and Development Initiative, Écologie et santé des écosystèmes (ESE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.inrae.fr/hal-02621084
https://doi.org/10.1111/oik.04998
Description
Summary:International audience Early developmental conditions contribute to individual heterogeneity of both phenotypic traits and fitness components, ultimately affecting population dynamics. Although the demographic consequences of ontogenic growth are best quantified using an integrated measure of fitness, most analyses to date have instead studied individual fitness components in isolation. Here, we estimated phenotypic selection on weaning mass in female southern elephant seals Mirounga leonina by analyzing individual-based data collected between 1986 and 2016 with capture-recapture and matrix projection models. In support of a hypothesis predicting a gradual decrease of weaning mass effects with time since weaning (the replacement hypothesis), we found that the estimated effects of weaning mass on future survival and recruitment probability was of intermediate duration (rather than transient or permanent). Heavier female offspring had improved odds of survival in early life and a higher probability to recruit at an early age. The positive link between weaning mass and recruitment age is noteworthy, considering that pre-recruitment mortality already imposed a strong selective filter on the population, leaving only the most robust' individuals to reproduce. The selection gradient on asymptotic population growth rate, a measure of mean absolute fitness, was weaker than selection on first-year survival and recruitment probabilities. Weaker selection on mean fitness occurs because weaning mass has little impact on adult survival, the fitness component to which the population growth of long-lived species is most sensitive. These results highlight the need to interpret individual variation in phenotypic traits in a context that considers the demographic pathways between the trait and an inclusive proxy of individual fitness. Although variation in weaning mass do not translate to permanent survival differences among individuals in adulthood, it explains heterogeneity and positive covariation between survival and ...