InterFrost Project Phase 2: Updated experiment design for validation of Cryohydrogeological codes (Frozen Inclusion)

International audience Recent field and modelling studies indicate that a fully-coupled, multi-dimensional, thermo-hydraulic (TH) approach is required to accurately model the evolution of permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes...

Full description

Bibliographic Details
Main Authors: Grenier, Christophe, Costard, F., Anbergen, Hauke, Bense, Victor, Chanzy, Quentin, Coon, Ethan, Collier, Nathaniel, Ferry, Michel, Frampton, Andrew, Frederick, Jennifer, GONCALVES, Julio, Holmén, Johann, Jost, Anne, Kokh, Samuel, Kurylyk, Barret, McKenzie, Jeffrey, Molson, John, Mouche, Emmanuel, Orgogozo, Laurent, PANNETIER, Romain, Pohl, Eric, Rivière, Agnès, Rühaak, Wolfram, Scheidegger, Johanna, Selroos, Jan-Olof, Therrien, Rene, Vidstrand, Patrik, Voss, Clifford
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), APS Antriebs-, Prüf- und Steuertechnik GmbH, School of Environmental Sciences Norwich, University of East Anglia Norwich (UEA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Los Alamos National Laboratory (LANL), Climate Change Science Institute Oak Ridge (CCSI), Oak Ridge National Laboratory Oak Ridge (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Laboratoire de physique et mécanique des matériaux (LPMM), Université Paul Verlaine - Metz (UPVM)-Institut National Polytechnique de Lorraine (INPL)-Ecole Nationale d'Ingénieurs de Metz (ENIM)-Centre National de la Recherche Scientifique (CNRS), Department of Physical Geography and Quaternary Geology, Stockholm University, Division of Hydrologic Sciences, Desert Research Institute (DRI), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Golder Associates Kapellgränd 7, 11625 Stockholm, Sweden, Structure et fonctionnement des systèmes hydriques continentaux (SISYPHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Maison de la Simulation (MDLS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre dor Water Resources Studies Halifax (CWRS), Dalhousie University Halifax, Department of Earth and Planetary Sciences Montréal (EPS), McGill University = Université McGill Montréal, Canada, Université Laval Québec (ULaval), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Technocentre Renault Guyancourt, RENAULT, École des Mines de Paris, Université Paris sciences et lettres (PSL), MINES ParisTech - École nationale supérieure des mines de Paris, Centre de Géosciences (GEOSCIENCES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), TU Darmstadt Graduate School of Excellence Energy Science & Engineering, British Geological Survey (BGS), Swedish Nuclear Fuel and Waste Management Company
Format: Conference Object
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02404339
Description
Summary:International audience Recent field and modelling studies indicate that a fully-coupled, multi-dimensional, thermo-hydraulic (TH) approach is required to accurately model the evolution of permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require validation. This issue was first addressed within the InterFrost IPA Action Group, by means of an intercomparison of thirteen numerical codes for two-dimensional TH test cases (TH2 & TH3). The main results (cf. Grenier et al. 2018 and wiki.lsce.ipsl.fr/interfrost) demonstrate that these codes provide robust results for the test cases considered. The second phase of the InterFrost project is devoted to the simulation of a cold-room reference experiment based on test case TH2 (Frozen Inclusion). In a first implementation phase of the experimental setup, the initial frozen inclusion was inserted in the setup prior to the complete filling of the porous medium and the flow initiation. The thermal evolution of the system was monitored by thermistors located at the center of the initial inclusion and along the downgradient centerline. This setup provided optimal conditions to control the initial experiment geometries but resulted in slight differences in the initialization time for different experiments. We present a second implementation strategy that considers "in place" generation of an initial frozen inclusion through a cooling coil. The initial frozen inclusion is obtained after the initial cooling time and its initial thermal state is measured by means of an array of thermistors. In a second step, the flow is initiated, and the thermal evolution is monitored through an array of 11 thermistors (within the initial position and downgradient). The experimental setup and monitoring results as well as preliminary simulation results are presented. Derived results and conclusions from this exercise form the basis for the next phase within the InterFrost ...