Major Issues in Simulating Some Arctic Snowpack Properties Using Current Detailed Snow Physics Models: Consequences for the Thermal Regime and Water Budget of Permafrost

International audience Accurately simulating the physical properties of Arctic snowpacks is essential for modeling the surface energy budget and the permafrost thermal regime. We show that the detailed snow physics models Crocus and SNOWPACK cannot simulate critical snow physical variables. Both mod...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Dominé, Florent, Picard, Ghislain, Morin, Samuel, Barrere, Mathieu, Madore, Jean-Benoît, Langlois, Alexandre
Other Authors: Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval Québec (ULaval)-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), Centre d'Etudes de la Neige (CEN), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), department of chemistry and chemical engineering, Royal Military College of Canada
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Ice
Online Access:https://hal.archives-ouvertes.fr/hal-02393134
https://hal.archives-ouvertes.fr/hal-02393134/document
https://hal.archives-ouvertes.fr/hal-02393134/file/121-DomineJAMES2019.pdf
https://doi.org/10.1029/2018MS001445
Description
Summary:International audience Accurately simulating the physical properties of Arctic snowpacks is essential for modeling the surface energy budget and the permafrost thermal regime. We show that the detailed snow physics models Crocus and SNOWPACK cannot simulate critical snow physical variables. Both models simulate basal layers with high density and high thermal conductivity, and top layers with low values for both variables, while field measurements yield opposite results. We explore the impact of an inverted snow stratigraphy on the permafrost thermal regime at a high Arctic site using a simplified heat transfer model and idealized snowpacks with three layers. One snowpack has a typical Arctic stratification with a low-density insulating basal layer, while the other (called Alpine-type snowpack) has a dense conducting basal layer. Snowpack stratification impacts simulated ground temperatures at 5 cm depth by less than 0.3°C. Heat conduction through layered snowpacks is therefore determined by thermal insulance rather than by stratification. Ground dehydration caused by upward water vapor diffusion is 4 times greater under Arctic stratification, leading to a larger latent heat loss, but also to a lower soil thermal conductivity caused by ice loss, so that the overall effect of dehydration on ground temperature is uncertain. Snowpack stratification is found to affect snow surface temperature by up to 4°C. Lastly, different snow metamorphism rates lead to a lower Alpine snowpack albedo, contributing to a warmer ground. Quantifying all these effects is needed for adequately simulating permafrost temperature. This requires the development of a snow and soil model that describes water vapor fluxes. Plain Language Summary Many detailed snow physics models were developed mostly for alpine conditions. They do not reproduce the strong upward water vapor flux between the lowest snow layers in contact with the warmer ground and the upper snow layers in contact with the colder atmosphere, which occurs in the Arctic. As a ...