Thermodynamics of sea ice phase composition revisited

International audience Pure ice, brine and solid minerals are the main contributors to sea ice mass. Constitutional changes with salinity and temperature exert a fundamental control on sea ice physical, chemical, and biological properties. However, current estimation methods and model representation...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Vancoppenolle, Martin, Madec, Gurvan, Thomas, Max, Mcdougall, Trevor
Other Authors: Nucleus for European Modeling of the Ocean (NEMO R&D ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), University of East Anglia Norwich (UEA), University of New South Wales Sydney (UNSW), European Project: 730997,EUROCHAMP2020(2020)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-02179263
https://hal.sorbonne-universite.fr/hal-02179263/document
https://hal.sorbonne-universite.fr/hal-02179263/file/Vancoppenolle_et_al_TEOS10_phase_v2.0_no_footnotes.pdf
https://doi.org/10.1029/2018JC014611
Description
Summary:International audience Pure ice, brine and solid minerals are the main contributors to sea ice mass. Constitutional changes with salinity and temperature exert a fundamental control on sea ice physical, chemical, and biological properties. However, current estimation methods and model representations of the sea ice phase composition suffer from two limitations—in a context of poorly quantified uncertainties. First, salt minerals are neglected. Second, formulations are inconsistent with international standards, in particular with the International Thermodynamic Equation of Seawater (TEOS‐10). To address these issues, we revisit the thermodynamics of the sea ice phase composition by confronting observations, theory, and the usual computation methods. We find remarkable agreement between observations and the Gibbs‐Pitzer theory as implemented in FREZCHEM, both for brine salinity (RMSE = 1.9 g/kg) and liquid H2O mass fraction (RMSE = 8.6 g/kg). On this basis, we propose expanded sea ice phase composition equations including minerals, expressed in terms of International Temperature Scale 1990 temperature and absolute salinity, and valid down to the eutectic temperature (−36.2 °C). These equations precisely reproduce FREZCHEM, outcompeting currently used calculation techniques. We also suggest a modification of the TEOS‐10 seawater Gibbs function giving a liquidus curve consistent with observations down to the eutectic temperature without changing TEOS‐10 inside its original validity range.