The initiation of puberty in Atlantic salmon brings about large changes in testicular gene expression that are modulated by the energy status

International audience Background: When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Exami...

Full description

Bibliographic Details
Published in:BMC Genomics
Main Authors: Crespo, Diego, Bogerd, Jan, Sambroni, Elisabeth, Le Gac, Florence, Andersson, Eva, Edvardsen, Rolf B., Bergman, Elisabeth Jonsson, Bjornsson, Bjorn Thrandur, Taranger, Geir Lasse, Schulz, Rudiger W.
Other Authors: Universiteit Utrecht, Laboratoire de Physiologie et Génomique des Poissons (LPGP), Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), University of Gothenburg (GU), Norwegian Ministry of Fisheries and Coastal Affairs 12622, European Union LIFECYCLE FP7-222719, European Project: 222719,EC:FP7:KBBE,FP7-KBBE-2007-2A,LIFECYCLE(2009)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal-univ-rennes1.archives-ouvertes.fr/hal-02178334
https://hal-univ-rennes1.archives-ouvertes.fr/hal-02178334/document
https://hal-univ-rennes1.archives-ouvertes.fr/hal-02178334/file/2019_Crespo_BMC_Genomics_1.pdf
https://doi.org/10.1186/s12864-019-5869-9
Description
Summary:International audience Background: When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. Results: Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfβ, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. Conclusions: Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell ...