Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

International audience This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Mioche, Guillaume, Jourdan, Olivier, Delanoë, Julien, Gourbeyre, Christophe, Febvre, Guy, Dupuy, Régis, Monier, Marie, Szczap, Frédéric, Schwarzenboeck, Alfons, Gayet, Jean-François
Other Authors: Laboratoire de Météorologie Physique (LaMP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), CNRS/INSU
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01625414
https://hal.archives-ouvertes.fr/hal-01625414/document
https://hal.archives-ouvertes.fr/hal-01625414/file/acp-17-12845-2017.pdf
https://doi.org/10.5194/acp-17-12845-2017
Description
Summary:International audience This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm −3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m −3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L −1 and 0.025 g m −3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener–Bergeron–Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) – extinction relationship, ice and ...