Oyster reproduction is affected by exposure to polystyrene microplastics

00000 International audience Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP whi...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Sussarellu, Rossana, Suquet, Marc, Thomas, Yoann, Lambert, Christophe, Fabioux, Caroline, Pernet, Marie Eve Julie, Le Goïc, Nelly, Quillien, Virgile, Mingant, Christian, Epelboin, Yanouk, Corporeau, Charlotte, Guyomarch, Julien, Robbens, Johan, Paul-Pont, Ika, Soudant, Philippe, Huvet, Arnaud
Other Authors: Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut de Recherche pour le Développement (IRD), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne), Centre de documentation de recherche et d'expérimentations sur les pollutions accidentelles des eaux (Cedre), Cedre
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
ACL
Online Access:https://hal.archives-ouvertes.fr/hal-01483227
https://doi.org/10.1073/pnas.1519019113
Description
Summary:00000 International audience Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 mu m in diameter; 0.023 mg.L-1) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-mu m micro-PS over the 2-mu m-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.