An Effectful Way to Eliminate Addiction to Dependence

International audience We define a monadic translation of type theory, called weaning translation, that allows for a large range of effects in dependent type theory—such as exceptions, non-termination, non-determinism or writing operation. Through the light of a call-by-push-value decomposition, we...

Full description

Bibliographic Details
Published in:2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
Main Authors: Pédrot, Pierre-Marie, Tabareau, Nicolas
Other Authors: University of Ljubljana, Gallinette : vers une nouvelle génération d'assistant à la preuve (GALLINETTE), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Numérique de Nantes (LS2N), Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), European Project: 637339,H2020 ERC,ERC-2014-STG,CoqHoTT(2015)
Format: Conference Object
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.inria.fr/hal-01441829
https://hal.inria.fr/hal-01441829/document
https://hal.inria.fr/hal-01441829/file/main.pdf
https://doi.org/10.1109/LICS.2017.8005113
Description
Summary:International audience We define a monadic translation of type theory, called weaning translation, that allows for a large range of effects in dependent type theory—such as exceptions, non-termination, non-determinism or writing operation. Through the light of a call-by-push-value decomposition, we explain why the traditional approach fails with type dependency and justify our approach. Crucially, the construction requires that the universe of algebras of the monad forms itself an algebra. The weaning translation applies to a version of the Calculus of Inductive Constructions (CIC) with a restricted version of dependent elimination. Finally, we show how to recover a translation of full CIC by mixing parametricity techniques with the weaning translation. This provides the first effectful version of CIC.