First satellite identification of volcanic carbon monoxide

International audience Volcanic degassing produces abundant H2O and CO2, as well as SO2, HCl, H2S, S2, H2, HF, CO, and SiF4. Volcanic SO2, HCl, and H2S have been detected from satellites in the past; the remaining species are analyzed in situ or using airborne instruments, with all the consequent li...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Martínez-Alonso, S., Deeter, M. N., Worden, H. M., Clerbaux, Cathy, Mao, D., Gille, J. C.
Other Authors: National Center for Atmospheric Research Boulder (NCAR), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00750411
https://hal.archives-ouvertes.fr/hal-00750411/document
https://hal.archives-ouvertes.fr/hal-00750411/file/Mart-nez-Alonso_et_al-2012-Geophysical_Research_Letters.pdf
https://doi.org/10.1029/2012GL053275
Description
Summary:International audience Volcanic degassing produces abundant H2O and CO2, as well as SO2, HCl, H2S, S2, H2, HF, CO, and SiF4. Volcanic SO2, HCl, and H2S have been detected from satellites in the past; the remaining species are analyzed in situ or using airborne instruments, with all the consequent limitations in safety and sampling, and at elevated costs. We report identification of high CO concentrations consistent with a volcanic origin (the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions in Iceland) in data from the Measurements of Pollution in the Troposphere instrument (MOPITT) onboard EOS/Terra. The high CO values coincide spatially and temporally with ash plumes emanating from the eruptive centers, with elevated SO2 and aerosol optical thickness, as well as with high CO values in data from the Infrared Atmospheric Sounding Interferometer (IASI), onboard MetOp-A. CO has a positive indirect radiative forcing; climate models currently do not account for volcanic CO emissions. Given global volcanic CO2 emissions between 130 and 440 Tg/year and volcanic CO:CO2 ratios from the literature, we estimate that average global volcanic CO emissions may be on the order of ∼5.5 Tg/year, equivalent to the CO emissions caused by combined fossil fuel and biofuel combustion in Australia.