Depositional model in subglacial cavities, Killiney Bay, Ireland. Interactions between sedimentation, deformation and glacial dynamics.

23 pages International audience Subglacial meltwater drainage and sedimentary processes play a major role in ice-sheet dynamic but there is a lack of study of subglacial environment because modern ice-sheet beds remain inaccessible. Previous authors already intended to provide diagnostic criterion a...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Clerc, Sylvain, Buoncristiani, Jean-François, Guiraud, Michel, Desaubliaux, Guy, Portier, Eric
Other Authors: Biogéosciences UMR 6282 Dijon (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Direction Exploration Production, Gaz de France Suez (GDF Suez), Funding from GDF Suez E&P Division.
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00663941
https://doi.org/10.1016/j.quascirev.2011.12.004
Description
Summary:23 pages International audience Subglacial meltwater drainage and sedimentary processes play a major role in ice-sheet dynamic but there is a lack of study of subglacial environment because modern ice-sheet beds remain inaccessible. Previous authors already intended to provide diagnostic criterion and recent investigations suggest that fluid pressure variations are a key factor in subglacial environment. This paper investigated the late Devensian sedimentary record in order to describe subglacial sedimentological facies associations and deformation features related to fluid overpressures. We used an integrated approach, based on stratigraphy, sedimentology and deformations styles to demonstrate a subglacial depositional model. The studied interval is composed of stratified gravel and sand interbedded with diamicton and boulder pavement, deposited in depressions formed by irregularity of the upper surface of diamicton. Deformation structures include convolutes, dykes and normal micro-faulting. Dykes show different dip directions from vertical, oblique to subhorizontal from which both directions of shortening and extension can be determined. Vertical dykes are formed under pure shear strain related to ice weight only. Oblique dykes imply both ice-bed coupling and simple shear strain between ice and substrate induced by flowing ice related to progressively increasing meltwater drainage intensity. Horizontal dykes are formed when minimum strain is vertical and therefore the overpressure exceeds the weight of overburden. They are associated with high meltwater drainage intensity and ice-bed uncoupling and refer to hydrofracturing. Overall, depositional and deformation sequence also illustrates the increasing intensity of meltwater drainage in small cavity as high energy channelised deposits, and in large cavities where subaqueous fan are deposited under hydraulic jump conditions. Moreover, large cavities represent lee-side cavities formed by fast-flowing ice over an obstacle. Hydrofracturing is likely to occur ...