Deformed diagonal harmonic polynomials for complex reflection groups

arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-modu...

Full description

Bibliographic Details
Published in:Discrete Mathematics & Theoretical Computer Science
Main Authors: Bergeron, François, Borie, Nicolas, Thiéry, Nicolas M.
Other Authors: Laboratoire de combinatoire et d'informatique mathématique Montréal (LaCIM), Centre de Recherches Mathématiques Montréal (CRM), Université de Montréal (UdeM)-Université de Montréal (UdeM)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.inria.fr/hal-00632267
https://hal.inria.fr/hal-00632267v2/document
https://hal.inria.fr/hal-00632267v2/file/dmAO0113.pdf
https://doi.org/10.46298/dmtcs.2897
_version_ 1821552878935867392
author Bergeron, François
Borie, Nicolas
Thiéry, Nicolas M.
author2 Laboratoire de combinatoire et d'informatique mathématique Montréal (LaCIM)
Centre de Recherches Mathématiques Montréal (CRM)
Université de Montréal (UdeM)-Université de Montréal (UdeM)-Université du Québec à Montréal = University of Québec in Montréal (UQAM)
Laboratoire de Mathématiques d'Orsay (LM-Orsay)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Bousquet-Mélou
Mireille and Wachs
Michelle and Hultman
Axel
author_facet Bergeron, François
Borie, Nicolas
Thiéry, Nicolas M.
author_sort Bergeron, François
collection Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
container_issue Proceedings
container_title Discrete Mathematics & Theoretical Computer Science
container_volume DMTCS Proceeding
description arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine.
format Conference Object
genre Iceland
genre_facet Iceland
id ftccsdartic:oai:HAL:hal-00632267v2
institution Open Polar
language English
op_collection_id ftccsdartic
op_coverage Reykjavik, Iceland
op_doi https://doi.org/10.46298/dmtcs.2897
op_relation info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2897
hal-00632267
https://hal.inria.fr/hal-00632267
https://hal.inria.fr/hal-00632267v2/document
https://hal.inria.fr/hal-00632267v2/file/dmAO0113.pdf
doi:10.46298/dmtcs.2897
op_rights info:eu-repo/semantics/OpenAccess
op_source ISSN: 1462-7264
EISSN: 1365-8050
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics and Theoretical Computer Science (DMTCS)
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
https://hal.inria.fr/hal-00632267
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.135-146, ⟨10.46298/dmtcs.2897⟩
publishDate 2011
publisher HAL CCSD
record_format openpolar
spelling ftccsdartic:oai:HAL:hal-00632267v2 2025-01-16T22:36:08+00:00 Deformed diagonal harmonic polynomials for complex reflection groups Bergeron, François Borie, Nicolas Thiéry, Nicolas M. Laboratoire de combinatoire et d'informatique mathématique Montréal (LaCIM) Centre de Recherches Mathématiques Montréal (CRM) Université de Montréal (UdeM)-Université de Montréal (UdeM)-Université du Québec à Montréal = University of Québec in Montréal (UQAM) Laboratoire de Mathématiques d'Orsay (LM-Orsay) Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS) Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://hal.inria.fr/hal-00632267 https://hal.inria.fr/hal-00632267v2/document https://hal.inria.fr/hal-00632267v2/file/dmAO0113.pdf https://doi.org/10.46298/dmtcs.2897 en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2897 hal-00632267 https://hal.inria.fr/hal-00632267 https://hal.inria.fr/hal-00632267v2/document https://hal.inria.fr/hal-00632267v2/file/dmAO0113.pdf doi:10.46298/dmtcs.2897 info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science Discrete Mathematics and Theoretical Computer Science (DMTCS) 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-00632267 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.135-146, ⟨10.46298/dmtcs.2897⟩ diagonal harmonic polynomials complex reflection group rational Steenrod algebra deformations [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftccsdartic https://doi.org/10.46298/dmtcs.2897 2023-03-27T12:10:51Z arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine. Conference Object Iceland Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe) Discrete Mathematics & Theoretical Computer Science DMTCS Proceeding Proceedings
spellingShingle diagonal harmonic polynomials
complex reflection group
rational Steenrod algebra
deformations
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Bergeron, François
Borie, Nicolas
Thiéry, Nicolas M.
Deformed diagonal harmonic polynomials for complex reflection groups
title Deformed diagonal harmonic polynomials for complex reflection groups
title_full Deformed diagonal harmonic polynomials for complex reflection groups
title_fullStr Deformed diagonal harmonic polynomials for complex reflection groups
title_full_unstemmed Deformed diagonal harmonic polynomials for complex reflection groups
title_short Deformed diagonal harmonic polynomials for complex reflection groups
title_sort deformed diagonal harmonic polynomials for complex reflection groups
topic diagonal harmonic polynomials
complex reflection group
rational Steenrod algebra
deformations
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
topic_facet diagonal harmonic polynomials
complex reflection group
rational Steenrod algebra
deformations
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
url https://hal.inria.fr/hal-00632267
https://hal.inria.fr/hal-00632267v2/document
https://hal.inria.fr/hal-00632267v2/file/dmAO0113.pdf
https://doi.org/10.46298/dmtcs.2897