Deformed diagonal harmonic polynomials for complex reflection groups

arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-modu...

Full description

Bibliographic Details
Published in:Discrete Mathematics & Theoretical Computer Science
Main Authors: Bergeron, François, Borie, Nicolas, Thiéry, Nicolas M.
Other Authors: Laboratoire de combinatoire et d'informatique mathématique Montréal (LaCIM), Centre de Recherches Mathématiques Montréal (CRM), Université de Montréal (UdeM)-Université de Montréal (UdeM)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.inria.fr/hal-00632267
https://hal.inria.fr/hal-00632267v2/document
https://hal.inria.fr/hal-00632267v2/file/dmAO0113.pdf
https://doi.org/10.46298/dmtcs.2897
Description
Summary:arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine.