Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis.

International audience The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to cont...

Full description

Bibliographic Details
Main Authors: Violot, S., Haser, R., Sonan, G., Georlette, D., Feller, G., Aghajari, N.
Other Authors: Institut de biologie et chimie des protéines Lyon (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2003
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00313542
Description
Summary:International audience The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of the cold adaptation and the high catalytic efficiency of the enzyme at low and moderate temperatures. The catalytic core domain of the psychrophilic cellulase CelG from P. haloplanktis has been expressed, purified and crystallized and a complete diffraction data set to 1.8 A has been collected. The space group was found to be P2(1)2(1)2(1), with unit-cell parameters a = 135.1, b = 78.4, c = 44.1 A. A molecular-replacement solution, using the structure of the mesophilic counterpart Cel5A from Erwinia chrysanthemi as a search model, has been found.The Antarctic psychrophile Pseudoalteromonas haloplanktis produces a cold-active cellulase. To date, a three-dimensional structure of a psychrophilic cellulase has been lacking. Crystallographic studies of this cold-adapted enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of the cold adaptation and the high catalytic efficiency of the enzyme at low and moderate temperatures. The catalytic core domain of the psychrophilic cellulase CelG from P. haloplanktis has been expressed, purified and crystallized and a complete diffraction data set to 1.8 A has been collected. The space group was found to be P2(1)2(1)2(1), with unit-cell parameters a = 135.1, b = 78.4, c = 44.1 A. A molecular-replacement solution, using the structure of the mesophilic counterpart Cel5A from Erwinia chrysanthemi as a search model, has been found.