Direct evidence for radar reflector originating from changes in crystal-orientation fabric

International audience The origin of a strong continuous radar reflector observed with airborne radio-echo sounding (RES) at the EPICA deep-drilling site in Dronning Maud Land, Antarctica, is identified as a transition in crystal fabric orientation from a vertical girdle- to increased single-pole or...

Full description

Bibliographic Details
Main Authors: Eisen, O., Hamann, I., Kipfstuhl, S., Steinhage, D., Wilhelms, F.
Other Authors: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI), Helmholtz-Gemeinschaft = Helmholtz Association
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2007
Subjects:
Online Access:https://hal.science/hal-00298518
https://hal.science/hal-00298518/document
https://hal.science/hal-00298518/file/tcd-1-1-2007.pdf
Description
Summary:International audience The origin of a strong continuous radar reflector observed with airborne radio-echo sounding (RES) at the EPICA deep-drilling site in Dronning Maud Land, Antarctica, is identified as a transition in crystal fabric orientation from a vertical girdle- to increased single-pole orientation seen along the ice core. The reflector is observed with a 60 ns and 600 ns long pulse at a frequency of 150 MHz, spans one pulse length, is continuous over 5 km, and occurs at a depth of about 2020?2030 m at the drill site. Changes in conductivity as reflector origin are excluded by investigating the ice-core profile and synthetic RES data. Our observations allow to extrapolate the crystal orientation feature along the reflector in space, with implications for ice-sheet dynamics. As the conductivity profile of the EPICA shows no distinctive peak at this depths, we exclude changes in conductivity as the reflector origin. This is supported by application of numerical forward modelling of electromagnetic wave propagation, based on the conductivity profile, which is able to reproduce nearby reflections, but fails to reproduce this one. Because of background noise, the permittivity profile based on dielectric does not show prominent signals at these depths. We therefore interpret the observed reflector to originate from this change in crystal fabric.