Observation of the hydrogen corona with SPICAM on Mars Express

A series of seven dedicated Lyman-α observations of exospheric atomic hydrogen in the martian corona were performed in March 2005 with the ultraviolet spectrometer SPICAM on board Mars Express. Two types of observations are analyzed, observations at high illumination (for a solar zenith angle SZA eq...

Full description

Bibliographic Details
Published in:Icarus
Main Authors: Chaufray, Jean-Yves, Bertaux, Jean-Loup, Leblanc, François, Quémerais, Eric
Other Authors: Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00283599
https://doi.org/10.1016/j.icarus.2008.01.009
Description
Summary:A series of seven dedicated Lyman-α observations of exospheric atomic hydrogen in the martian corona were performed in March 2005 with the ultraviolet spectrometer SPICAM on board Mars Express. Two types of observations are analyzed, observations at high illumination (for a solar zenith angle SZA equal to 30°) and observations at low illumination (for a solar zenith angle equal to 90° (terminator), and near the south pole). The measured Lyman-α emission is interpreted as purely resonant scattering of solar photons. Because the Lyman-α emission is optically thick, we use a forward model to analyze this data. Below the exobase, the hydrogen density is described by a diffusive model and above the exobase, it follows Chamberlain's approach without satellite particles. For different hydrogen density profiles between 80 and 50,000 km, the volume emission rates are computed by solving the radiative transfer equation. Such an approach has been used to analyze the Mariner 6, 7 exospheric Lyman-α data during the late 1960s. A reasonable fit of the set of observations is obtained assuming an exobase temperature between 200 and 250 K and an exobase density of ∼1–4 × 10 5 cm −3 in good agreement with photochemical models.