Evidence for olfactory search in wandering albatross, Diomedea exulans

International audience Wandering albatrosses (Diomedea exulans) forage over thousands of square kilometers of open ocean for patchily distributed live prey and carrion. These birds have large olfactory bulbs and respond to fishy-scented odors in at-sea trials, suggesting that olfaction plays a role...

Full description

Bibliographic Details
Main Authors: Nevitt, Gabrielle A., Losekoot, Marcel, Weimerskirch, Henri
Other Authors: Section of Neurobiology, Physiology, and Behavior, University of California Davis (UC Davis), University of California (UC)-University of California (UC), Bodega Marine Laboratory (BML), Department of Avian Sciences, Bogeda Marine Laboratory, Centre d'Études Biologiques de Chizé (CEBC), Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://hal.science/hal-00267351
Description
Summary:International audience Wandering albatrosses (Diomedea exulans) forage over thousands of square kilometers of open ocean for patchily distributed live prey and carrion. These birds have large olfactory bulbs and respond to fishy-scented odors in at-sea trials, suggesting that olfaction plays a role in natural foraging behavior. With the advent of new, fine-scale tracking technologies, we are beginning to explore how birds track prey in the pelagic environment, and we relate these observations to models of odor transport in natural situations. These models suggest that odors emanating from prey will tend to disperse laterally and downwind of the odor source and acquire an irregular and patchy concentration distribution due to turbulent transport. For a seabird foraging over the ocean, this scenario suggests that olfactory search would be facilitated by crosswind flight to optimize the probability of encountering a plume emanating from a prey item, followed by upwind, zigzag flight to localize the prey. By contrast, birds approaching prey by sight would be expected to fly directly to a prey item, irrespective of wind direction. Using high-precision global positioning system (GPS) loggers in conjunction with stomach temperature recorders to simultaneously monitor feeding events, we confirm these predictions in freely ranging wandering albatrosses. We found that initial olfactory detection was implicated in nearly half (46.8%) of all flown approaches preceding prey-capture events, accounting for 45.5% of total prey mass captured by in-flight foraging. These results offer insights into the sensory basis for area-restricted search at the large spatial scales of the open ocean.