Gulf stream variability in five oceanic general circulation models.

Five non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the lim...

Full description

Bibliographic Details
Published in:Journal of Physical Oceanography
Main Authors: De Coëtlogon, Gaëlle, Frankignoul, Claude, Bentsen, Mats, Delon, Claire, Haak, Helmuth, Masina, Simona, Pardaens, Anne
Other Authors: Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'océanographie dynamique et de climatologie (LODYC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Recherche pour le Développement (IRD), Nansen Environmental and Remote Sensing Center Bergen (NERSC), Laboratoire d'aérologie (LAERO), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales Toulouse (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Hadley Centre for Climate Prediction and Research, United Kingdom Met Office Exeter
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2006
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-00138640
https://hal.archives-ouvertes.fr/hal-00138640/document
https://hal.archives-ouvertes.fr/hal-00138640/file/%255B15200485%2520-%2520Journal%2520of%2520Physical%2520Oceanography%255D%2520Gulf%2520Stream%2520Variability%2520in%2520Five%2520Oceanic%2520General%2520Circulation%2520Models.pdf
https://doi.org/10.1175/JPO2963.1
Description
Summary:Five non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the limited model resolution, the temperature at the 200-m depth along the mean GS axis behaves similarly in most models to that observed, and it is also well correlated with the North Atlantic Oscillation (NAO), indicating that a northward (southward) GS shift lags a positive (negative) NAO phase by 0–2 yr. The northward shift is accompanied by an increase in the GS transport, and conversely the southward shift with a decrease in the GS transport. Two dominant time scales appear in the response of the GS transport to the NAO forcing: a fast time scale (less than 1 month) for the barotropic component, and a slower one (about 2 yr) for the baroclinic component. In addition, the two components are weakly coupled. The GS response seems broadly consistent with a linear adjustment to the changes in the wind stress curl, and evidence for baroclinic Rossby wave propagation is found in the southern part of the subtropical gyre. However, the GS shifts are also affected by basin-scale changes in the oceanic conditions, and they are well correlated in most models with the changes in the AMOC. A larger AMOC is found when the GS is stronger and displaced northward, and a higher correlation is found when the observed changes of the GS position are used in the comparison. The relation between the GS and the AMOC could be explained by the inherent coupling between the thermohaline and the wind-driven circulation, or by the NAO variability driving them on similar time scales in the models.