Sensitivity of sea-ice cover and ocean properties to wind-stress and radiative forcings from 1500 to 2000

In this thesis we investigate the sensitivity of the Arctic and Antarctic sea-ice cover and global ocean properties to wind-stress and radiative forcings from 1500 to 2000. In a first step, the conversion of the granular sea-ice model (GRAN) (Tremblay and Mysak, 1997) from Cartesian to spherical coo...

Full description

Bibliographic Details
Main Author: Sedlacek, Jan
Other Authors: Lawrence A Mysak (Supervisor)
Format: Thesis
Language:English
Published: McGill University 2008
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22010
Description
Summary:In this thesis we investigate the sensitivity of the Arctic and Antarctic sea-ice cover and global ocean properties to wind-stress and radiative forcings from 1500 to 2000. In a first step, the conversion of the granular sea-ice model (GRAN) (Tremblay and Mysak, 1997) from Cartesian to spherical coordinates is presented. The GRAN is coupled to the Earth System Climate Model of the University of Victoria as an application. The sea-ice thickness and drift in the Arctic Ocean agree well with observations. To further validate the model, the results of thermodynamic component are compared with the Surface Heat Budget of the Arctic Ocean (SHEBA) datasets which were collected between autumn 1997 and autumn 1998. The simulated growth rate is larger and the melt rate is smaller than observed. In a second step, the model is used to investigate which forcings had a dominant effect on the sea-ice cover in both polar regions during the Little Ice Age (LIA), defined as the period between 1500 and 1850, and the industrial period (1850 - 2000). Three different reconstructed wind-stress fields which take into account the North Atlantic Oscillation, one general circulation model wind-stress field, and three different radiative forcings are used (i.e., volcanic activity, insolation changes, greenhouse gas changes). The annual surface air temperature anomalies for the Northern Hemisphere, which are used as model validation, show good agreement with reconstructed temperature anomalies. The simulated sea-ice area and volume in the Northern Hemisphere were larger during the LIA as compared to the present. The comparison between wind-driven and radiatively-driven changes shows that both forcings result in equal magnitude changes in the case of ice volume; for ice area, the wind-driven part is twice as large as the radiatively-driven part. The simulations suggest that the main radiative forcing before 1850 was volcanic forcing, whereas after 1850 the greenhouse gas changes dominated the Nous étudions dans cette thèse de doctorat l'effet du vent et du forçage radiatif sur la glace de mer de l'Arctique et de l'Antarctique et les proprétés de l'eau de mer. Cette étude se consentre essentiellement sur la période comprise entre 1500 et 2000. En premier lieu, la conversion du modèle de glace de mer granulaire (GRAN) des coordonnées cartésiennes aux coordonnées sphériques est présentée. Comme application, le GRAN est couplé au 'Earth System Climate Model' de l'Université de Victoria. La dérive et l'épaisseur de la glace dans l'océan Arctique concordent avec les observations. Le module thermodynamique est validé en comparant ses résultats aux données du 'Surface Heat Budget of the Arctic Ocean' (SHEBA). Ces données ont été prises entre l'automne 1997 et l'automne 1998. La croissance de glace simulée par le modèle est supérieure et la fonte inférieure à celles observées. En deuxième lieu, le modèle est utilisé pour étudier quels forçages ont un effet dominant sur la couverture de glace de mer des deux régions polaires durant la petite ère glacière (PEG), la période comprise entre 1500 et 1850, et la ère industrielle (1850 - 2000). Trois reconstructions différentes du vent modulée par l'oscillation nord-Atlantique, les vents obtenus d'un modèle de circulation général et trois forçages radiatifs distincts (i.e., activité volcanique, changements de l'insolation et changements des concentrations de gaz à effet de serre) sont utilisés pour forcer le modèle. Les anomalies de la temperature de surface annuelle pour l'hémisphère Nord, qui sont utilisées pour valider le modèle, montrent un bon accord avec les reconstructions des anomalies de temperature. Le volume et l'étendue de la couverture de glace simulés dans l'hémisphère Nord sont plus élevés pendant la PEG que les valeurs présentes. Les résultats obtenus montrent que les changements de volume causés soit par le vent soit par les forçages ra