Quantitative changes in gene expression caused by missense variants in deoxyribonucleic acid repair genes

Inherited mutations in DNA repair genes are major contributors to familial cancer syndromes. Most pathogenic mutations introduce premature stop codons resulting in the loss of protein function. Missense variants of uncertain pathogenic significance are also often observed. In an attempt to understan...

Full description

Bibliographic Details
Main Author: Li, Lili
Other Authors: William Foulkes (Supervisor)
Format: Thesis
Language:English
Published: McGill University 2014
Subjects:
Online Access:http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121151
Description
Summary:Inherited mutations in DNA repair genes are major contributors to familial cancer syndromes. Most pathogenic mutations introduce premature stop codons resulting in the loss of protein function. Missense variants of uncertain pathogenic significance are also often observed. In an attempt to understand the physiological attributes of this category of variants, this thesis analysed two recurrent coding variants using a multi-disciplinary approach. The first variant, PMS2 c.2002A>G, was identified in the Inuit population of Quebec and early onset cancers co-segregate with homozygous status. The second, BRCA2 c.6853A>G, appears to be restricted to the Ashkenazi Jewish population and is frequently recorded in the database of Breast Cancer Information Core (BIC, http://research.nhgri.nih.gov/bic/). Both variants not only cause the substitution of an isoleucine to a valine in the proteins, but also interfere with RNA splicing. The variant PMS2 c.2002 A>G creates a novel 5' splicing site which competes with the authentic one, resulting in biased gene expression. The majority of the transcripts are aberrant ones with a five-base pair deletion and a minority of intact transcripts are still produced. The intact transcripts are translated into a full-length proteins which contribute to the milder phenotype associated with this variant, when compared to phenotypes caused by homozygous truncating PMS2 mutations. The variant BRCA2 c.6853A>G disrupts a splicing enhancer promoting the skipping of exon 12, an in-frame exon that does not code for any known functional domains. No detectable phenotype is caused by this variant.The work described in this thesis generated significant medical insights into hereditary syndrome. First, we demonstrated that the inclusion of expression analysis in gene test can improve the accuracy of predicting the functional significance of a candidate variant. Second, manipulating gene expression may be a potential avenue of preventing recessive diseases. Finally, phenotypic variation may be caused by multiple factors, so predicting disease risk solely based on DNA sequence should be practised cautiously with full awareness of the limitation. Les mutations héréditaires dans les gènes de réparation de l'ADN sont des contributeurs majeurs aux syndromes de cancers familiaux. La plupart des mutations pathogènes introduisent des codons non-sens prématurés qui résultent en la perte de la fonction des protéines. Des variantes faux-sens ayant une signification pathogène incertaine sont aussi souvent observées. Afin de comprendre les caractéristiques physiologiques de cette catégorie de variantes, cette thèse a analysé deux variantes récurrentes de codage utilisant une approche multidisciplinaire.La première variante, PMS2 c.2002A> G, fut identifiée dans la population inuit du Québec; les cancers précoces ségrégent dans les familles avec l'état homozygote des porteurs. La seconde variante, BRCA2 c.6853A> G, semble limitée à la population juive ashkénaze et est fréquemment enregistrée dans la base de données du Breast Cancer Information Core (BIC, http://research.nhgri.nih.gov/bic/). Ces deux variantes provoquent non seulement la substitution d'une isoleucine en une valine au niveau de la protéine, mais toutes deux interfèrent aussi avec l'épissage de l'ARN. La variante PMS2 c.2002 A> G crée un nouveau site d'épissage 5 'qui est en concurrence avec le site authentique, résultant en une expression génique biaisée composée d'une majorité de transcrits contenant une délétion de cinq paires de bases et une minorité de transcrits intactes. Les transcrits intactes sont traduits en protéines de pleine longueur, ce qui contribue à la manifestation d'un phénotype plus modéré associé à cette variante comparativement aux phénotypes causés par ceux des homozygotes tronquants. La variante BRCA2 c.6853A>G interrompt un activateur d'épissage, ce qui favorise l'exclusion de l'exon 12, un exon ne codant pour aucun des domaines fonctionnels connus de BRCA2. Cette variante n'est pas associée à un phénotype détectable. L'étude présentée dans cette thèse a mis en évidence des notions médicales importantes ayant trait aux syndromes héréditaires. Tout d'abord, l'inclusion de l'analyse d'expression génique dans un test génétique peut améliorer la précision des prédictions quant à la signification fonctionnelle des variantes. Deuxièmement, la manipulation de l'expression des gènes pourra être une avenue potentielle pour prévenir les maladies héréditaires récessives. Enfin, la variation phénotypique peut être causée par de multiples facteurs. Ainsi, tenter de prédire le risque de maladie en se basant uniquement sur les séquences d'ADN génomique ne doit être fait qu'en prenant en considération les limites de cette appro.