Decadal evolution of atmospheric ozone and remote sensing of tropospheric ozone

Monitoring and preservation of the Earth's ozone layer has engaged scientists intensively in the 20th century especially after the discovery of the Antarctic ozone hole by Farman et al. (1985). There is increasing evidence that ozone depletion occurs on a global scale such as in the Arctic and...

Full description

Bibliographic Details
Main Author: Jiang, Yibo
Format: Thesis
Language:English
Published: 1997
Subjects:
Online Access:https://thesis.library.caltech.edu/7434/
https://thesis.library.caltech.edu/7434/2/Jiang_y_1997.pdf
https://resolver.caltech.edu/CaltechTHESIS:01242013-141747377
Description
Summary:Monitoring and preservation of the Earth's ozone layer has engaged scientists intensively in the 20th century especially after the discovery of the Antarctic ozone hole by Farman et al. (1985). There is increasing evidence that ozone depletion occurs on a global scale such as in the Arctic and at midlatitudes. Following the understanding of the the catalytic destruction of ozone in the stratosphere by chlorine derived from chlorofluorocarbons (CFC's), there is a growing realization that the consequences of anthropogenic pollution can be felt in unpredictable ways in near and faraway places. The atmosphere is a complex mixture of more than a thousand trace chemicals that are constantly reacting and redistributing. The need to understand the sources and distribution of these chemicals, along with the mechanisms by which they are transformed, transported, and ultimately removed from the atmosphere, has grown in parallel with the increased concern about air pollution and its consequences. Therefore, the exploration of the mechanism controlling both spatial and temporal variation of the atmosphere is a key component of the atmosphere science research (as part of the global change) and it requires an interdisciplinary approach and innovative application of the traditional techniques of chemistry, physics, and meteorology. Monitoring the composition of the troposphere and stratosphere globally is particularly interesting in this context for ozone which is the key component regulating the photochemistry of the atmosphere. In chapter 1, the decadal evolution of the Antarctic ozone hole is studied by using ozone column amounts obtained by the total ozone mapping spectrometer (TOMS) in the southern polar region during late austral winter and spring (Days 240 - 300) for 1980 - 1991 using area-mapping techniques and area-weighted vortex averages. The vortex here is defined using the -50 PVU (1 PVU = 1.0 x 10^(-6)K kg^(-1) m^2 s^(-1)) contour on the 500 K isentropic surface. The principal result is that there is a distinct ...