Chemical Controls on the Dissolution Kinetics of Calcite in Seawater

Calcium carbonate minerals are abundant on the earth’s surface. Delivery of alkalinity to the oceans is balanced by the production and burial of calcium carbonate in marine sediments, which results in a large reservoir of sedimentary calcium carbonate both in the ocean and in terrestrial rocks. Alka...

Full description

Bibliographic Details
Main Author: Subhas, Adam Vinay
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:https://thesis.library.caltech.edu/10330/
https://thesis.library.caltech.edu/10330/1/chemical-controls-dissolution.pdf
https://resolver.caltech.edu/CaltechTHESIS:06092017-091849904
Description
Summary:Calcium carbonate minerals are abundant on the earth’s surface. Delivery of alkalinity to the oceans is balanced by the production and burial of calcium carbonate in marine sediments, which results in a large reservoir of sedimentary calcium carbonate both in the ocean and in terrestrial rocks. Alkalinity also provides oceanic buffering capacity, which today results in about 60 times more dissolved carbon dioxide in the world oceans than is present as carbon dioxide gas in the atmosphere. Because calcium carbonate formation removes alkalinity from the oceans, calcium carbonate precipitation leads to the outgassing of carbon dioxide from the ocean into the atmosphere. Likewise, the dissolution of calcium carbonate adds alkalinity to the oceans, leading to an increased buffering capacity and a drawdown of atmospheric carbon dioxide concentration. Calcium carbonate precipitation in the form of calcite and aragonite is almost exclusively mediated by biological organisms such as corals, coccoliths, and foraminifera, which use these minerals as components in their shells. calcium carbonate is overproduced by organisms in the ocean relative to the flux of alkalinity delivered to the oceans by rivers. Thus, a significant portion of calcium carbonate must be dissolved back into seawater for the ocean alkalinity cycle to come into steady state. Because of the link between alkalinity and carbon dioxide, the ocean alkalinity cycle has a direct effect on atmospheric carbon dioxide concentration especially on timescales less than 100,000 years. How fast calcium carbonate dissolves back into seawater is thus a crucial rate in determining the response of the oceanic system to perturbations in either alkalinity or carbon dioxide input to the ocean-atmosphere system. We are testing the kinetics of this system with the large amount of carbon dioxide emitted from fossil fuel burning, about one third of which has dissolved into the surface ocean. This process is known as ocean acidification, as carbon dioxide is an acid, soaking up ...