A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg^2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 ⩽ ℓ ⩽ 2500) with...

Full description

Bibliographic Details
Published in:The Astrophysical Journal
Main Authors: Aylor, K., Crites, A. T.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Astronomical Society 2017
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/aa947b
Description
Summary:The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg^2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 ⩽ ℓ ⩽ 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n_s and A_se^(-2τ). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planckdata in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at ℓ > 2000. © 2017 The American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the ...