Uncertainties and implications of the Late Cretaceous and Tertiary position of North America relative to the Farallon, Kula, and Pacific Plates

We present updated global plate reconstructions and calculated uncertainties of the Pacific, Kula, and Farallon/Vancouver plates relative to North America for selected times since 68 Ma. Improved magnetic data from the Indian Ocean decrease the uncertainties in. the global plate circuit approach; th...

Full description

Bibliographic Details
Published in:Tectonics
Main Authors: Stock, Joann, Molnar, Peter
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 1988
Subjects:
Online Access:https://doi.org/10.1029/TC007i006p01339
Description
Summary:We present updated global plate reconstructions and calculated uncertainties of the Pacific, Kula, and Farallon/Vancouver plates relative to North America for selected times since 68 Ma. Improved magnetic data from the Indian Ocean decrease the uncertainties in. the global plate circuit approach; these uncertainties are now considerably smaller than those inherent in equivalent reconstructions based on the assumption of fixed hotspots. Major differences between these results and those of others are due to our use of more detailed Africa-North America reconstructions, separate Vancouver and Farallon plate reconstructions, and the assumption of a rigid Antarctica plate during Cenozoic time. The uncertainties in the relative positions of the Pacific and North America plates since the time of anomaly 7 (26 Ma) range up to ±100 km in position, or from 1 to 3 m.y. in time. If the Mendocino triple junction initiated at about 28.5 Ma, its position would have been at 31.3°N ± 130 km relative to fixed North America. Unacceptable overlap of oceanic crust of the Pacific plate with continental crust of western North America in the anomaly 10 (30 Ma) reconstruction is a minimum of 340±200 km along an azimuth of N60°E and may be accounted for by Basin and Range extension. Pacific-North America displacement in the past 20 Ma is found to be considerably less than that calculated by fixed hotspot reconstructions. Farallon (Vancouver)-North America convergence velocity decreased greatly between the times of anomalies 24 and 21 (56 to 50 Ma), prior to the 43 Ma age of the Hawaiian-Emperor bend and the often quoted 40 Ma "end" of the Laramide orogeny. A change in direction of Farallon-North America convergence occurred sometime between 50 and 42 Ma and also may not correlate with the time of the Hawaiian-Emperor bend. The lack of data from subducted parts of the Farallon and Kula plates permits many possibilities regarding the position of the Kula-Farallon ridge, the age of subducted crust, or the position of oceanic plateaus ...