Quantitative constraints on the atmospheric chemistry of nitrogen oxides: An analysis along chemical coordinates

In situ observations Of NO_2, NO, NO_y, ClONO_2, OH, O_3, aerosol surface area, spectrally resolved solar radiation, pressure and temperature obtained from the ER-2 aircraft during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) experiments are used to examine the factors c...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Cohen, R. C., Perkins, K. K., Koch, L. C., Stimpfle, R. M., Wennberg, P. O., Hanisco, T. F., Lanzendorf, E. J., Bonne, G. P., Voss, P. B., Salawitch, R. J., Del Negro, L. A., Wilson, J. C., McElroy, C. T., Bui, T. P.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2000
Subjects:
Online Access:https://authors.library.caltech.edu/46462/
https://authors.library.caltech.edu/46462/1/jgrd7650.pdf
https://resolver.caltech.edu/CaltechAUTHORS:20140624-094548081
Description
Summary:In situ observations Of NO_2, NO, NO_y, ClONO_2, OH, O_3, aerosol surface area, spectrally resolved solar radiation, pressure and temperature obtained from the ER-2 aircraft during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) experiments are used to examine the factors controlling the fast photochemistry connecting NO and NO_2 and the slower chemistry connecting NO_x and HNO_3. Our analysis uses “chemical coordinates” to examine gradients of the difference between a model and precisely calibrated measurements to provide a quantitative assessment of the accuracy of current photochemical models. The NO/NO_2 analysis suggests that reducing the activation energy for the NO+O_3 reaction by 1.7 kJ/mol will improve model representation of the temperature dependence of the NO/NO_2 ratio in the range 215–235 K. The NO_x/HNO_3 analysis shows that systematic errors in the relative rate coefficients used to describe NO_x loss by the reaction OH + NO_2 → HNO_3 and by the reaction set NO_2 + O_3 → NO_3; NO_2 + NO_3 → N_(2)O_5; N_(2)O_5 + H_(2)O → 2HNO_3 are in error by +8.4% (+30/−45%) (OH+NO_2 too fast) in models using the Jet Propulsion Laboratory 1997 recommendations [DeMore et al., 1997]. Models that use recommendations for OH+NO2 and OH+HNO_3 based on reanalysis of recent and past laboratory measurements are in error by 1.2% (+30/−45%) (OH+NO_2 too slow). The +30%/−45% error limit reflects systematic uncertainties, while the statistical uncertainty is 0.65%. This analysis also shows that the POLARIS observations only modestly constrain the relative rates of the major NO_x production reactions HNO3 + OH → H_(2)O + NO_3 and HNO_3 + hν → OH + NO_2. Even under the assumption that all other aspects of the model are perfect, the POLARIS observations only constrain the rate coefficient for OH+HNO_3 to a range of 65% around the currently recommended value.