Chemistry of hydrogen oxide radicals (HO_x) in the Arctic troposphere in spring

We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HO_x≡H+OH+peroxy radicals) and their reservoirs (HO_y≡HO_x+...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Mao, J., St. Clair, J. M., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O.
Format: Article in Journal/Newspaper
Language:English
Published: European Geosciences Union 2010
Subjects:
Online Access:https://authors.library.caltech.edu/19386/
https://authors.library.caltech.edu/19386/1/Mao2010p10844Atmos_Chem_Phys.pdf
https://resolver.caltech.edu/CaltechAUTHORS:20100811-084643946
Description
Summary:We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HO_x≡H+OH+peroxy radicals) and their reservoirs (HO_y≡HO_x+peroxides) in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism overestimates the observed HO_2 and H_2O_2 concentrations. Computation of HO_x and HO_y gas-phase chemical budgets on the basis of the aircraft observations also indicates a large missing sink for both. We hypothesize that this could reflect HO_2 uptake by aerosols, favored by low temperatures and relatively high aerosol loadings, through a mechanism that does not produce H_2O_2. We implemented such an uptake of HO_2 by aerosol in the model using a standard reactive uptake coefficient parameterization with γ(HO_2) values ranging from 0.02 at 275 K to 0.5 at 220 K. This successfully reproduces the concentrations and vertical distributions of the different HO_x species and HO_y reservoirs. HO_2 uptake by aerosol is then a major HO_x and HO_y sink, decreasing mean OH and HO_2 concentrations in the Arctic troposphere by 32% and 31% respectively. Better rate and product data for HO_2 uptake by aerosol are needed to understand this role of aerosols in limiting the oxidizing power of the Arctic atmosphere.