Microbial Survival Strategies In Ancient Permafrost: Insights From Metagenomics

In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to...

Full description

Bibliographic Details
Published in:The ISME Journal
Main Authors: Mackelprang, Rachel, Burkert, Alexander, Haw, Monica, Mahendrarajah, Tara, Conaway, Christopher H, Douglas, Thomas A, Waldrop, Mark P
Format: Article in Journal/Newspaper
Language:English
Published: Natural Publishing Group 2017
Subjects:
Online Access:http://hdl.handle.net/10211.3/204654
Description
Summary:In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 to 33 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.