Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns

Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instrumen...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Geddes, Jeffrey A., Martin, Randall V.
Format: Article in Journal/Newspaper
Language:English
Published: COPERNICUS GESELLSCHAFT MBH 2017
Subjects:
Online Access:https://hdl.handle.net/2144/31482
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000408534600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
https://doi.org/10.5194/acp-17-10071-2017
Description
Summary:Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last 2 decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996–2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3−) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r = 0.83, normalized mean bias = −7%, N = 136). Likewise, our calculated trends in wet NO3− deposition are largely consistent with the measurements, with 129 of the 136 gridded model–data pairs sharing overlapping 95% confidence intervals. We find that global mean NOy deposition over 1996–2014 is 56.0TgNyr−1, with a minimum in 2006 of 50.5TgN and a maximum in 2012 of 60.8TgN. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60% in eastern North America, doubled in regions of East Asia, and declined by 20% in parts of western Europe. About 40% of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last 2 decades. Net export from the continental United States decreased substantially, from 2.9TgNyr−1 in 1996 to 1.5TgNyr−1 in 2014. Export from China more than tripled between 1996 and 2011 (from 1.0 to 3.5TgNyr−1), before a striking decline to 2.5TgNyr−1 by ...