First Report of Biofluorescence in Arctic Snailfishes and Rare Occurrence of Multiple Fluorescent Colors in a Single Species

Biofluorescence has recently been reported to be phylogenetically widespread and phenotypically variable across bony fishes, and is most common in tropical coral reef lineages. Here we provide the first documentation of prominent biofluorescence in Arctic fishes including two juvenile specimens of L...

Full description

Bibliographic Details
Published in:American Museum Novitates
Main Authors: David F. Gruber, John S. Sparks
Format: Text
Language:English
Published: American Museum of Natural History 2021
Subjects:
Online Access:https://doi.org/10.1206/3967.1
Description
Summary:Biofluorescence has recently been reported to be phylogenetically widespread and phenotypically variable across bony fishes, and is most common in tropical coral reef lineages. Here we provide the first documentation of prominent biofluorescence in Arctic fishes including two juvenile specimens of Liparis gibbus (variegated snailfish) collected from the coastal waters of Eastern Greenland, as well as an adult L. tunicatus (kelp snailfish) collected in the Bering Strait off of Little Diomede Island, AK. Observations of L. gibbus were made during nighttime dives within kelp forests in iceberg habitats in Southeastern Greenland in August 2019. The juvenile L. gibbus specimens exhibit both green (523–530 nm) and red (674–678 nm) biofluorescence on discrete anatomical areas, which provides a rare example of multiple fluorescent colors emitted from a single individual. Notably, the adult L. tunicatus emitted only red fluorescence in a bilaterally symmetrical pattern of discrete red dots and blotches. Potential weak green biofluorescence was also noted in a flatfish (Hippoglossoides platessoides) collected in Greenland, but in no other Arctic species. As the distribution and function of biofluorescence in marine fishes is further examined, this report adds context to its widespread geographical and environmental distributions, and shows that, although rare, biofluorescence does occur in Arctic fish lineages.