Shifts in soil microbial community biomass and resource utilization along a Canadian glacier chronosequence

Hahn, A. S. and Quideau, S. A. 2013. Shifts in soil microbial community biomass and resource utilization along a Canadian glacier chronosequence. Can. J. Soil Sci. 93: 305-318. We aimed to describe soil microbial community composition and functional diversity as well as determine the influence of En...

Full description

Bibliographic Details
Main Authors: Aria S. Hahn, Sylvie A. Quideau
Format: Text
Language:English
Published: Canadian Science Publishing 2013
Subjects:
Online Access:https://doi.org/10.1139/CJSS2012-133
Description
Summary:Hahn, A. S. and Quideau, S. A. 2013. Shifts in soil microbial community biomass and resource utilization along a Canadian glacier chronosequence. Can. J. Soil Sci. 93: 305-318. We aimed to describe soil microbial community composition and functional diversity as well as determine the influence of Engelmann spruce (Picea engelmannii Parry) and yellow mountain avens (Dryas drummondii Rich.) on soil microbial community succession along a Canadian glacier chronosequence. Soil microbial composition and functional activity were assessed using phospholipid fatty acid (PLFA) analysis, substrate-induced respiration and enzyme activity analysis. To the best of our knowledge, this is the first study investigating peroxidase and phenol oxidase activities, indicators of fungal activity, along any glacial chronosequence. While no difference in soil microbial community composition along the chronosequence was detected from the PLFA analysis, both total microbial biomass and fungal activity increased with time since deglaciation. Yellow mountain avens, a plant known to support microbial nitrogen fixation in mid- and late successional stages, increased soil microbial biomass, although this effect took 40 yr after deglaciation to emerge. Additionally, significant correlations between microbial respiration of N-acetyl-glucosamine, protocatechuic acid, glucose and percent soil N were found along the chronosequence, indicating that the soil microbial community was influencing changes in the soil environment.