Multi-sensor airborne observations of freeboard, snow depth, and sea-ice thickness in the Arctic

Sea-ice thickness is a key factor and indicator in understanding the impact of the global climate change. Deriving basin-wide sea-ice thickness estimates from satellite laser and radar altimetry relies on freeboard measurements. The freeboard-to-thickness conversion in turn requires information of s...

Full description

Bibliographic Details
Main Authors: Jutila, Arttu, Hendricks, Stefan, Ricker, Robert, von Albedyll, Luisa, Krumpen, Thomas, Hutter, Nils, Birnbaum, Gerit, Haas, Christian
Format: Conference Object
Language:unknown
Published: 2022
Subjects:
Online Access:https://epic.awi.de/id/eprint/56136/
https://epic.awi.de/id/eprint/56136/1/02_Jutila-ESA-LPS22.pdf
https://hdl.handle.net/10013/epic.e47fdd72-13e5-4edd-beaf-10ad1db03c3d
Description
Summary:Sea-ice thickness is a key factor and indicator in understanding the impact of the global climate change. Deriving basin-wide sea-ice thickness estimates from satellite laser and radar altimetry relies on freeboard measurements. The freeboard-to-thickness conversion in turn requires information of snow mass and the density of the sea-ice layer that have unknown spatio-temporal variabilities and trends directly translating into the uncertainty of decadal sea-ice thickness data records. In addition, inter-mission biases arise from, e.g., different sensor types and frequencies as well as varying footprint sizes affected by surface roughness across regions and seasons. Therefore, carrying out validation and inter-calibration studies is crucial for reliable and continuous observation of the Earth’s cryosphere. To achieve this, it is beneficial to have simultaneous measurements of freeboard, snow depth, and sea-ice thickness, which provide reference data for both direct satellite observations and geophysical target parameters. Here, we present Alfred Wegener Institute’s (AWI) IceBird program, which is a series of fixed-wing aircraft campaigns to measure Arctic sea ice and to monitor its change. During two late-winter campaigns in the western Arctic Ocean in 2017 and 2019, we have carried out surveys with the unique scientific instrument configuration including an airborne laser scanner (ALS) for surface topography and freeboard measurements, a tethered electromagnetic induction sounding instrument (EM-Bird) for total (snow+ice) thickness measurements, and an ultrawideband frequency-modulated continuous-wave microwave radar to measure snow thickness. Therefore, we are able to observe all three bounding interfaces in the sea-ice–snow system in high resolution along survey tracks on regional scales. During the ship-based drift expedition Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) between October 2019 and September 2020, helicopter surveys were carried out in high spatio-temporal ...