Fully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series

The usability of multispectral satellite data for detecting and monitoring supraglacial meltwater ponds has been demonstrated for western Greenland. For a multitemporal analysis of large regions or entire Greenland, largely automated processing routines are required. Here, we present a sequence of a...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Hochreuther, Philipp, Neckel, Niklas, Reimann, Nathalie, Humbert, Angelika, Braun, Matthias
Format: Article in Journal/Newspaper
Language:unknown
Published: 2021
Subjects:
Online Access:https://epic.awi.de/id/eprint/53576/
https://epic.awi.de/id/eprint/53576/1/remotesensing-13-00205-v2.pdf
https://hdl.handle.net/10013/epic.2b53132c-33d6-4a3e-8d6b-a3b7f94bef8b
https://hdl.handle.net/
Description
Summary:The usability of multispectral satellite data for detecting and monitoring supraglacial meltwater ponds has been demonstrated for western Greenland. For a multitemporal analysis of large regions or entire Greenland, largely automated processing routines are required. Here, we present a sequence of algorithms that allow for an automated Sentinel-2 data search, download, processing, and generation of a consistent and dense melt pond area time-series based on open-source software. We test our approach for a ~82,000 km2 area at the 79°N Glacier (Nioghalvfjerdsbrae) in northeast Greenland, covering the years 2016, 2017, 2018 and 2019. Our lake detection is based on the ratio of the blue and red visible bands using a minimum threshold. To remove false classification caused by the similar spectra of shadow and water on ice, we implement a shadow model to mask out topographically induced artifacts. We identified 880 individual lakes, traceable over 479 time-steps throughout 2016-2019, with an average size of 64,212 m2. Of the four years, 2019 had the most extensive lake area coverage with a maximum of 333 km2 and a maximum individual lake size of 30 km2. With 1.5 days average observation interval, our time-series allows for a comparison with climate data of daily resolution, enabling a better understanding of short-term climate-glacier feedbacks.