Iron transport by subglacial meltwater indicated by stable iron isotopes in fjord sediments of King George Island, Antarctica

Polar regions are critical for future climate evolution, and they experience major environmental changes. A particular focus of biogeochemical investigations in these regions lies on iron (Fe). This element drives primary productivity and, thus, the uptake of atmospheric CO2 in vast areas of the oce...

Full description

Bibliographic Details
Main Authors: Hartmann, Jan F., Henkel, Susann, Kasten, Sabine, Busso, Adrian S., Staubwasser, Michael
Format: Conference Object
Language:unknown
Published: 2020
Subjects:
Online Access:https://epic.awi.de/id/eprint/51902/
https://doi.org/10.5194/egusphere-egu2020-8940
https://hdl.handle.net/10013/epic.89de29b1-65e3-4c28-9980-579e785add7f
Description
Summary:Polar regions are critical for future climate evolution, and they experience major environmental changes. A particular focus of biogeochemical investigations in these regions lies on iron (Fe). This element drives primary productivity and, thus, the uptake of atmospheric CO2 in vast areas of the ocean. Due to the Fe-limitation of phytoplankton growth in the Southern Ocean, Antarctica is a key region for studying the change of iron fluxes as glaciers progressively melt away. The respective climate feedbacks can currently hardly be quantified because data availability is low, and iron transport and reaction pathways in Polar coastal and shelf areas are insufficiently understood. We show how novel stable Fe isotope techniques, in combination with other geochemical analyses, can be used to identify iron discharges from subglacial environments and how this will help us assessing short and long term impacts of glacier retreat on coastal ecosystems. Stable Fe isotopes (δ56Fe) may be used to trace Fe sources and reactions, but respective data availability is low. In addition, there is a need to constrain δ56Fe endmembers for different types of sediments, environments, and biogeochemical processes. δ56Fe data from pore waters and sequentially extracted solid Fe phases at two sites in Potter Cove (King George Island, Antarctica), a bay affected by fast glacier retreat, are presented. Close to the glacier front, sediments contain high amounts of easily reducible Fe oxides and show a dominance of ferruginous conditions compared to sediments close to the ice-free coast, where surficial oxic meltwater discharges and sulfate reduction dominates. We suggest that high amounts of reducible Fe oxides close to the glacier mainly derive from subglacial sources, where Fe liberation from comminuted material beneath the glacier is coupled to biogeochemical weathering. A strong argument for a subglacial source is the predominantly negative δ56Fe signature of reducible Fe oxides that remains constant throughout the ferruginous zone. In ...