Establishment of routine sample preparation protocols at the newly installed MICADAS 14C dating facility at AWI

In November 2016, the first Mini-Carbon-Dating-System (MICADAS) manufactured by Ionplus AG was delivered and installed at the Alfred-Wegener-Institute (AWI), Germany. The new facility includes a graphitization unit (AGE3) connected with an elementar analyser (EA), a carbonate handling system (CHS),...

Full description

Bibliographic Details
Main Authors: Gentz, Torben, Bonk, Elizabeth, Hefter, Jens, Grotheer, Hendrik, Meyer, Vera, Mollenhauer, Gesine
Format: Conference Object
Language:unknown
Published: 2017
Subjects:
Online Access:https://epic.awi.de/id/eprint/45539/
https://epic.awi.de/id/eprint/45539/1/MICADAS_overview.pdf
https://hdl.handle.net/10013/epic.51670
https://hdl.handle.net/10013/epic.51670.d001
Description
Summary:In November 2016, the first Mini-Carbon-Dating-System (MICADAS) manufactured by Ionplus AG was delivered and installed at the Alfred-Wegener-Institute (AWI), Germany. The new facility includes a graphitization unit (AGE3) connected with an elementar analyser (EA), a carbonate handling system (CHS), and a gas inlet system (GIS). The main goal for the facility at AWI will be the precise and independent dating of carbonaceous materials in marine sediments, sea-ice, and water to address various processes of the global carbon cycling. A particular focus will be on sediments from the high latitude oceans, in which radiocarbon-based age models are often difficult to obtain due to the scarcity of carbonate microfossils. One advantage of the MICADAS is the potential to analyse samples, which contain only a small amount of carbon as CO2 gas. For example, it will be possible to determine 14C ages of samples of foraminifera from carbonate-lean sediments, allowing for paleoclimate reconstructions in key locations for Earth’s climate system such as the Southern ocean. Likewise, compound-specific 14C analyses receive growing attention in carbon cycle studies and require handling of small samples of typically <100µg carbon. The wide range of applications encompassing gas analyses of foraminifera and compound-specific analysis as well as analyses of graphite targets requires establishing routine protocols of various methods of sample preparation, as well as thorough assessment of the respective carbon blanks. We report on our standard procedures for samples of organic matter from sediments or water including carbonate removal, combustion and graphitization using the AGE3 coupled to the EA, as well as on the methodology applied for carbonate samples using the CHS system and the GIS. We have investigated different sample preparation protocols and present the initial results using materials of known age. Additionally, we present the first results of our assessment of process blanks.