Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea)

The composition of permafrost deposits holds information on the paleo-environment during and following deposition. Sampling natural exposures and drilling are two methods used to access permafrost archives. In this study, we combine both approaches at the western coast of the Buor Khaya Peninsula in...

Full description

Bibliographic Details
Main Authors: Schirrmeister, Lutz, Schwamborn, Georg, Overduin, Paul, Strauss, Jens, Fuchs, Margret, Grigoriev, Mikhail N., Yakshina, Irina A., Rethemeyer, Janet, Dietze, Elisabeth, Wetterich, Sebastian
Format: Article in Journal/Newspaper
Language:unknown
Published: Copernicus Publications 2016
Subjects:
Ice
Online Access:https://epic.awi.de/id/eprint/41412/
https://epic.awi.de/id/eprint/41412/1/Schirrmeister_2016_bg-2016-283corr.pdf
http://www.biogeosciences-discuss.net/bg-2016-283/
https://hdl.handle.net/10013/epic.48470
https://hdl.handle.net/10013/epic.48470.d001
Description
Summary:The composition of permafrost deposits holds information on the paleo-environment during and following deposition. Sampling natural exposures and drilling are two methods used to access permafrost archives. In this study, we combine both approaches at the western coast of the Buor Khaya Peninsula in the south-central Laptev Sea (Siberia) to study late Pleistocene permafrost; namely the Yedoma Ice Complex (IC), which is prominent across much of eastern Siberia. Two Yedoma IC exposures and one drill core were studied for cryolithological (i.e. ice and sediment features), geochemical, and geochronological parameters. Borehole temperatures were measured for three years to capture the current thermal state of permafrost. The studied sequences were composed of ice-oversaturated silts and fine-grained sands with considerable amounts of organic matter (0.2 to 24 wt %). Syngenetic ice wedges intersect the frozen deposits. The deposition of the Yedoma IC, as revealed by radiocarbon dates of sedimentary organic matter, took place between 54.1 and 30.1 kyr BP. Continued Yedoma IC deposition until about 14.7 kyr BP is shown by dates from organic matter preserved in ice-wedge ice. For the lowermost and oldest Yedoma IC part, infrared-stimulated luminescence dates on feldspar show deposition ages between 51.1 ± 4.9 and 44.2 ± 3.6 kyr BP. End-member modelling was applied to grain-size-distribution data to unmix sedimentation processes during Yedoma IC formation. Three to five statistical end-members were detected within Yedoma IC deposits of different ages, which we interpret as signals of alluvial, proluvial, and aeolian transport and redeposition as well as in-situ frost weathering in a polygonal tundra landscape. The study captures the internal variation of Yedoma IC characteristics and puts its local stratigraphy into regional scale. The cryolithological inventory of the Yedoma IC preserved on the Buor Khaya Peninsula is closely related to the results of other IC studies, for example, to the west on the Bykovsky Peninsula, where formation time (mainly during the late Pleistocene MIS 3 interstadial) and conditions were similar. Local freezing conditions on Buor Khaya, however, differed, and created solute-enriched (salty) and isotopically-light porewater pointing to deep active-layer and thaw-bulb freezing after deposition. Due to intense coastal erosion, the biogeochemical signature of the studied Yedoma IC represents the terrestrial end-member for, and is closely related to organic matter currently being deposited in the marine realm of the Laptev Sea shelf.