Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the la...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: Molina-Kescher, Mario, Frank, Martin, Tapia, Raul, Ronge, Thomas A., Nürnberg, Dirk, Tiedemann, Ralf
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley 2016
Subjects:
Online Access:https://epic.awi.de/id/eprint/41091/
https://hdl.handle.net/10013/epic.48064
Description
Summary:The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of 5.8 and 18.757 for εNd and 206Pb/204Pb, respectively, whereas glacial averages are 5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.